精英家教网 > 高中数学 > 题目详情
在极坐标系中,已知点A(2,
π
2
),B(2,π),点M是圆ρ=2cosθ上任意一点,则点M到直线AB的距离的最小值为(  )
A、
2
B、
3
2
2
-1
C、
3
2
2
D、
3
2
2
+1
考点:简单曲线的极坐标方程,直线与圆的位置关系
专题:坐标系和参数方程
分析:把A、B的极坐标化为直角坐标,求得直线AB的直角坐标方程,把圆的极坐标方程化为直角坐标方程,求出圆心到直线AB的距离d,则d减去半径,即为所求.
解答: 解:由题意可得点A、B的直角坐标分别为A(0,2),B(-2,0),故直线AB的方程为x-y=2.
圆ρ=2cosθ 即 ρ2=2ρcosθ,化为直角坐标方程为 (x-1)2+y2=1,
求得圆心(1,0)到直线AB的距离为d=
|1-0+2|
2
=
3
2
2

故点M到直线AB的距离的最小值为d-r=
3
2
2
-1,
故选:B.
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,直线和圆的位置关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某制药厂准备投入适当的广告费,对产品进行宣传,在一年内,预计年销量Q(万件)与广告费x(万元)之间的函数关系为Q=
3x+1
x+1
(x≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需后期再投入32万元,若每件售价为“年平均每件投入的150%”与“年平均每件所占广告费的50%”之和(注:投入包括“年固定投入”与“后期再投入”).
(1)试将年利润W万元表示为年广告费x万元的函数,并判断当年广告费投入100万元时,企业亏损还是盈利?
(2)当年广告费投入多少万元时,企业年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=-x2+4ax-5a在区间[-2,2]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x2+bx+c(x≥0)
-3(x<0)
,且f(2)=f(0),f(3)=9,则关于x的方程f(x)=x的解的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

正项数列{an}满足:(an-2n)(an+1)=0.
(1)求数列{an}的通项公式an
(2)令bn=
1
(n+1)an
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是不重合的直线,α,β是不重合的平面,以下结论正确的是
 
(将正确的序号均填上).
①若a∥b,b?α,则a∥α;   
②若a⊥b,a⊥c,b?α,c?a,则a⊥α;
③若a⊥α,a?β,则α⊥β;   
④若a∥β,b∥β,a?α,b?α,则α∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门将某校12名学生分为两组进行问卷调查.第一组的得分情况为:5,6,7,8,9,10;第二组的得分情况为:4,6,7,9,9,10.
(1)根据以上数据,判断两组中哪组更优秀?
(2)把第一组的6名学生的得分看成一个总体.用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
=(2,1),
b
=(-1,1)则向量
a
+
b
a
-
b
的夹角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x2-4x>2ax+a对一切实数x都成立,则实数a的取值范围是(  )
A、(1,4)
B、(-4,-1)
C、(-∞,-4)∪(-1,+∞)
D、(-∞,1)∪(4,+∞)

查看答案和解析>>

同步练习册答案