【题目】如图,圆盘上有一指针,开始时指向圆盘的正上方.指针每次顺时针方向绕圆盘中心转动一角,且,经2004次旋转,第一次回到了其初始位置,即又指向了圆盘的正上方.试问:有多少个可能的不同值?
【答案】325
【解析】
显然有.①
这里是当指针第一次回到其初始位置时已经转过的圈数.
因是正整数,式①整理后可得.
同时必与2004互质,即.
设.若有,则令.
此时有.
这意味着指针转动次,每次转动角,指针则旋转圈之后,回到其初始位置,与题设矛盾.
由上述讨论可知,对任一满足,且的,对应一个可能的.反之亦然.
故问题成为求满足上述两个条件的所有的个数.
因为,
所以,.
在不大于1001的正整数中,不能被2或3整除的正整数共有
(个).
(符号表示不超过的最大整数.)
其中只有及能被167整除,所以,不大于1001且满足条件的共有个.再去掉1,5,7,11,13,17,19这7个不大于20的数,知同时满足两个条件的共有个.
因此,共有325个可能的不同值.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,是椭圆上一动点(与左、右顶点不重合).已知的面积的最大值为,椭圆的离心率为.
(1)求椭圆的方程;
(2)过的直线交椭圆于、两点,过作轴的垂线交椭圆与另一点(不与、重合).设的外心为,求证为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 a ∈ N+ , a ≥ 2 , 集合.在闭区间[ 1, a ] 上是否存在 b , 使 A ∩ B ≠ ? 如果存在, 求出 b 的一切可能值及相应的 A ∩ B;如果不存在, 试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. “f(0)”是“函数f(x)是奇函数”的充要条件
B. 若p:,,则:,
C. “若,则”的否命题是“若,则”
D. 若为假命题,则p,q均为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴长为.
(1)求椭圆的标准方程;
(2)若椭圆的左焦点为,过点的直线与椭圆交于两点,则在轴上是否存在一个定点使得直线的斜率互为相反数?若存在,求出定点的坐标;若不存在,也请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为方程为(),直线的参数方程为(为参数).
(1)点在曲线上,且曲线在点处的切线与直线垂直,求点的直角坐标和曲线C的参数方程;
(2)设直线与曲线有两个不同的交点,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;
(1)求曲线的极坐标方程与直线的直角坐标方程;
(2)在曲线上取两点,与原点构成,且满足,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:
每月完成合格产品的件数(单位:百件) | |||||
频数 | 10 | 45 | 35 | 6 | 4 |
男员工人数 | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?
非“生产能手” | “生产能手” | 合计 | |
男员工 | |||
span>女员工 | |||
合计 |
(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.
附:,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com