【题目】已知函数,其中为实数.
(1)当时,判断函数在其定义域上的单调性;
(2)是否存在实数,使得对任意的,恒成立?若不存在,请说明理由;若存在,求出的值并加以证明.
科目:高中数学 来源: 题型:
【题目】已知两点分别在轴和轴上运动,且,若动点满足.
(1)求出动点的轨迹的标准方程;
(2)设动直线与曲线有且仅有一个公共点,与圆相交于两点(两点均不在坐标轴上),求直线的斜率之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sinx-xcosx-x,f′(x)为f(x)的导数.
(1)证明:f′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是: (是参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,且,试求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱的底面是正三角形,底面,M为的中点.
(1)求证:平面;
(2)若,且沿侧棱展开三棱柱的侧面,得到的侧面展开图的对角线长为,求作点在平面内的射影H,请说明作法和理由,并求线段AH的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动、活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为元,若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取名,每名用户赠送元的红包,为了合理确定保费的值,该手机厂商进行了问卷调查,统计后得到下表(其中表示保费为元时愿意购买该“手机碎屏险”的用户比例);
(1)根据上面的数据求出关于的回归直线方程;
(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为.已知更换一次该型号手机屏幕的费用为元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于万元,能否把保费定为5元?
x | 10 | 20 | 30 | 40 | 50 |
y | 0.79 | 0.59 | 0.38 | 0.23 | 0.01 |
参考公式:回归方程中斜率和截距的最小二乘估计分别为,
,
参考数据:表中的5个值从左到右分别记为,相应的值分别记为,经计算有,其中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),若以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)若是曲线上的任意一点,是曲线上的任意一点,求线段的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com