精英家教网 > 高中数学 > 题目详情
如图所示,ABCD-ABEF都是平行四边形,且不共面,M、N分别是AC、BF的中点,判断
CE
MN
的关系.
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:因为ABCD-ABEF都是平行四边形,所以连接AE,交于N,M,N分别是AC,AE的中点,所以MN∥CE.
解答: 解:∵ABCD-ABEF都是平行四边形,
∵M,N分别是AC,AE的中点,连接AE,交于N,
∴MN是△ACE的中位线
∴MN∥CE,
CE
MN
点评:本题考查了空间线线关系的判断;属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3+
b
2
x2+cx.
(1)若b=2,c=-1,求y=|f(x)|的单调增区间;
(2)若b=-6,g(x)=|f(x)|,若g(x)≤kx对一切x∈[0,2]恒成立,求k的最小值及h(c)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆台上的上、下底面半径分别为10和20,它的侧面展开图扇环的圆心角为π,则圆台的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

说出下列三视图表示的几何体,并画出该几何体.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=kx+1与椭圆
x2
2014
+
y2
m
=1恒有公共点,则m的取值范围是(  )
A、[1,2014)∪(2014,+∞)
B、[1,2014)
C、[1,+∞)
D、(2014,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂生产一种内径为105mm的零件,为了检查该生产流水线的质量情况,随机抽取该流水线上50个零件作为样本测出它们的内径长度(单位:mm),长度的分组区间为[90,95),[95,100),[100,105),[105,110),[110,115),由此得到样本的频率分布直方图,如图所示.已知内径长度在[100,110)之间的零件被认定为一等品,在[95,100)或[110,115)之间的零件被认定为二等品,否则认定为次品.
(1)从上述样品中随机抽取1个零件,求恰好是一个次品的概率;
(2)以上述样本数据来估计该流水线的总体数据,若从流水线上(产品众多)任意抽取3个零件,设一等品的数量为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式ax2-x-c>0的解集为{x|-2<x<1},则函数y=ax2+x-c的零点为(  )
A、(-1,0)和(2,0)
B、(-1,0)
C、(2,0)
D、-1和2

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
1
an-1
+1,则a4=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C(C为钝角)所对的边分别为a,b,c,且cos(A+B-C)=
1
4
,a=2,
sin(A+B)
sinA
=2.
(1)求cosC的值;
(2)求b的长.

查看答案和解析>>

同步练习册答案