分析 分两种情况考虑:当切线方程的斜率不存在时,显然切线方程为x=x0;当切线方程的斜率存在时,要求过P的切线方程,就要求直线的斜率,先根据O和P的坐标求出直线OP的斜率,根据直线与圆相切时切线垂直与经过切点的半径得到直线OP与切线垂直,即可求出切线的斜率,得到切线方程.
解答 解:当切线方程的斜率不存在时,切线方程为:x=x0;
当切线方程的斜率存在时,
由x2+y2=r2,可知圆心为原点(0,0),所以直线OP的斜率k=$\frac{{y}_{0}}{{x}_{0}}$,
根据所求切线与直线OP垂直得到切线的斜率k′=-$\frac{{x}_{0}}{{y}_{0}}$,
则切线方程为y-y0=-$\frac{{x}_{0}}{{y}_{0}}$(x-x0);
即x0x+y0y-x02-y02=0,
综上,所求切线方程为x0x+y0y=r2.
点评 考查学生灵活运用圆切线的性质定理,掌握两直线垂直时所满足的条件,会根据一点坐标与斜率写出直线的方程.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 终边在x轴上角的集合是{α|α=kπ,k∈Z} | |
B. | 终边在y轴上角的集合是$\{α|α=\frac{π}{2}+kπ,k∈Z\}$ | |
C. | 终边在坐标轴上角的集合是$\{α|α=k•\frac{π}{2},k∈Z\}$ | |
D. | 终边在直线y=x上角的集合是$\{α|α=\frac{π}{4}+2kπ,k∈Z\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{8}{9}$ | B. | -$\frac{8}{9}$ | C. | $\frac{1}{17}$ | D. | $\frac{16}{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3(4n-1) | B. | 3(2n-1) | C. | 4n-1 | D. | (2n-1)2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com