精英家教网 > 高中数学 > 题目详情

【题目】(1)设曲线在原点处切线与直线垂直,则a=______.

(2)已知等差数列中,已知,则=________________.

(3)若函数,则__________

(4)曲线与直线轴围成的图形的面积为__________

【答案】

【解析】

(1)求函数导数,再将x=0代入得切线斜率,进而由直线垂直可得斜率之积为-1,从而得解;

(2)代入条件即可得解;

(3)求函数导数,代入x=1即可得解;

(4)曲线与直线的交点为(1,2),由定积分的几何意义,计算即可得解.

(1)解:∵

∴曲线在点(0,0)处的切线方程是y=x,

∵直线y=x与直线垂直垂直∴,即

故答案为1.

(2)等差数列中,已知

故答案为54.

(3)因为于是一个常数

所以,代入得,

所以

故答案为-2e.

(4) 曲线与直线的交点为(1,2),

由曲线直线y=-x+3x轴所围成的图形的面积是

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点上异于顶点的任意一点,过的直线于另一点,交轴正半轴于点,且有,当点的横坐标为3时,为正三角形.

1)求的方程;

2)若直线,且相切于点,试问直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题:

,则的逆否命题为真命题

函数在区间上为增函数的充分不必要条件

③若为假命题,则均为假命题

④对于命题,则为:

其中真命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 f(x)的最小值为0.

(1)a的值

(2)若数列满足a1=1,an+l=f(an)+2(nZ+),Sn=[a1]+[a2]+…+[an],[m]表示不超过实数m的最大整数,求Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点是.问:是否存在内接等腰直角三角形,该三角形的一条直角边过点?如果存在,存在几个?如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过点的直线与圆相交于两点,过点且与垂直的直线与圆的另一交点为

(1)当点坐标为时,求直线的方程;

(2)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右顶点分别为AB,离心率为,点P1)为椭圆上一点.

1)求椭圆C的标准方程;

2)如图,过点C01)且斜率大于1的直线l与椭圆交于MN两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l4x3y100,半径为2的圆Cl相切,圆心Cx轴上且在直线l的右上方.

(1)求圆C的方程;

(2)过点M(10)的直线与圆C交于AB两点(Ax轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,,,△是等边三角形,分别为的中点.

(Ⅰ)求证:平面

(Ⅱ)若二面角的大小为,求直线与平面所成角的正切值.

查看答案和解析>>

同步练习册答案