精英家教网 > 高中数学 > 题目详情

【题目】2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考——如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.

(Ⅰ)求得分在上的频率;

(Ⅱ)求社区居民问卷调查的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)

(Ⅲ)以频率估计概率,若在全部参与学习的居民中随机抽取5人参加问卷调查,记得分在间的人数为,求的分布列.

【答案】(Ⅰ)0.3 ;(Ⅱ)70.5;(Ⅲ)详见解析.

【解析】

I)由频率分布直方图可得所求的频率;

II)由频率分布直方图的平均值公式计算即可;

III)人数服从即可得出PXk)=k012345,及其分布列与数学期望E(X)

(I)依题意,所求频率.

(II)由(1)可知各组的中间值及对应的频率如下表:

即问卷调查的平均得分的估计值为.

(III)依题意,.

,.

,

,.

的分布列为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点N在曲线上,直线轴交于点,动点满足,记点的轨迹为

1)求的轨迹方程;

2)若过点的直线交于两点,点在直线 (为坐标原点),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,左右焦点分别为,点是椭圆上位于第一象限的任一点,且当时,.

1)求椭圆的标准方程;

2)若椭圆上点与点关于原点对称,过点垂直于轴,垂足为,连接并延长交于另一点,交轴于点.

(ⅰ)求面积最大值;

(ⅱ)证明:直线斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求函数的定义域,并证明在定义域上是奇函数;

)若 恒成立,求实数的取值范围;

)当时,试比较的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正整数数列满足:对任意,都有恒成立,则称数列为“友好数列”.

1)已知数列的通项公式分别为,求证:数列为“友好数列”;

2)已知数列为“友好数列”,且,求证:“数列是等差数列” 是“数列是等比数列”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(1)若,求曲线的直角坐标方程以及直线的极坐标方程;

(2)设点,曲线与直线交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列选项中,说法正确的是(

A.的否定是

B.若向量满足 ,则的夹角为钝角

C.,则

D.的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,垂直于梯形所在的平面,的中点,,四边形为矩形,线段于点.

(1)求证:平面

(2)求二面角的正弦值;

(3)在线段上是否存在一点,使得与平面所成角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市调硏机构对该市工薪阶层对楼市限购令态度进行调查,抽调了50名市民,他们月收入频数分布表和对楼市限购令赞成人数如下表:

月收入(单位:百元)

频数

5

10

5

5

频率

0.1

0.2

0.1

0.1

赞成人数

4

8

12

5

2

1

1)若所抽调的50名市民中,收入在的有15名,求的值,并完成频率分布直方图.

2)若从收入(单位:百元)在的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成楼市限购令,求的分布列与数学期望.

3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成楼市限购令,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.

查看答案和解析>>

同步练习册答案