精英家教网 > 高中数学 > 题目详情
设函数y=f(x)对任意实数x,都有f(x)=2f(x+1),当x∈[0,1]时,f(x)=
27
4
x2(1-x).
(Ⅰ)已知n∈N+,当x∈[n,n+1]时,求y=f(x)的解析式;
(Ⅱ)求证:对于任意的n∈N+,当x∈[n,n+1]时,都有|f(x)|≤
1
2n

(Ⅲ)对于函数y=f(x)(x∈[0,+∞),若在它的图象上存在点P,使经过点P的切线与直线x+y=1平行,那么这样点有多少个?并说明理由.
(Ⅰ)由f(x)=2f(x+1)?f(x)=
1
2
f(x-1),x∈[n,n+1],则(x-n)∈[0,1]
?f(x-n)=
27
4
(x-n)2(1+n-x).
f(x)=
1
2
f(x-1)=
1
22
f(x-2)=…=
1
2n
f(x-n)=
27
2n+2
(x-n)2(1+n-x).(n=0也适用).…(4分)
(Ⅱ)f'(x)=-
81
2n+2
(x-n)(x-
3n+2
3
)
,由f'(x)=0得x=n或x=n+
2
3

           x n (n,n+
2
3
n+
2
3
(n+
2
3
,n+1)
n+1
f'(x) + 0 - +
0 极大 0
f(x)的极大值为f(x)的最大值,fmax=f(n+
2
3
)=
1
2n

又f(x)≥f(n)=f(n+1)=0,∴|f(x)|=f(x)≤
1
2n
(x∈[n,n+1]).…(8分)
(Ⅲ)y=f(x),x∈[0,+∞)即为y=f(x),x∈[n,n+1],f'(x)=-1.
本题转化为方程f'(x)=-1在[n,n+1]上有解问题
即方程(x-n)(x-
3n+2
3
)-
2n+2
81
=0
在[n,n+1]内是否有解.…(11分)
令g(x)=(x-n)(x-
3n+2
3
)-
2n+2
81
=x2-
6n+2
3
x+
3n2+2n
3
-
2n+2
81
6

对轴称x=n+
1
3
∈[n,n+1],
又△=…=
4
9
+
2n+4
81
>0
,g(n)=-
2n+2
81
<0
,g(n+1)=
27-2n+2
81

①当0≤n≤2时,g(n+1)≥0,∴方程g(x)=0在区间[0,1],[1,2],[2,3]上分别有一解,即存在三个点P;
②n≥3时,g(n+1)<0,方程g(x)=0在[n,n+1]上无解,即不存在这样点P.
综上所述:满足条件的点P有三个.…(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)对任意正实数x,y都有f(x•y)=f(x)+f(y),已知f(8)=3,则f(
2
)
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)对任意的实数x,都有f(x)=
12
f(x-1)
,且当x∈[0,1]时,f(x)=27x2(1-x).
(1)若x∈[1,2]时,求y=f(x)的解析式;
(2)对于函数y=f(x)(x∈[0,+∞)),试问:在它的图象上是否存在点P,使得函数在点P处的切线与 x+y=0平行.若存在,那么这样的点P有几个;若不存在,说明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],记 Sn=f(x1)+f(x2)+…+f(xn),求证:0≤Sn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)对一切实数x都有f(3+x)=f(3-x)且方程恰有6个不同的实根,则这6个根之和为
18
18

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)对任意实数x,都有f(x)=2f(x+1),当x∈[0,1]时,f(x)=
27
4
x2(1-x).
(Ⅰ)已知n∈N+,当x∈[n,n+1]时,求y=f(x)的解析式;
(Ⅱ)求证:对于任意的n∈N+,当x∈[n,n+1]时,都有|f(x)|≤
1
2n

(Ⅲ)对于函数y=f(x)(x∈[0,+∞),若在它的图象上存在点P,使经过点P的切线与直线x+y=1平行,那么这样点有多少个?并说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省郴州市汝城一中高三(上)周练数学试卷(4)(理科)(解析版) 题型:解答题

设函数y=f(x)对任意的实数x,都有,且当x∈[0,1]时,f(x)=27x2(1-x).
(1)若x∈[1,2]时,求y=f(x)的解析式;
(2)对于函数y=f(x)(x∈[0,+∞)),试问:在它的图象上是否存在点P,使得函数在点P处的切线与 x+y=0平行.若存在,那么这样的点P有几个;若不存在,说明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],记 Sn=f(x1)+f(x2)+…+f(xn),求证:0≤Sn<4.

查看答案和解析>>

同步练习册答案