精英家教网 > 高中数学 > 题目详情
7.在平面直角坐标系xOy中,点(4,3)到直线3x-4y+a=0的距离为1,则实数a的值是±5.

分析 直接利用点到直线的距离公式,建立方程,即可求出实数a的值.

解答 解:由题意,$\frac{|a|}{\sqrt{9+16}}$=1,
∴a=±5.
故答案为±5.

点评 本题考查求实数a的值,正确运用点到直线的距离公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2},(x<2)}\\{lo{g}_{3}({x}^{2}-1),(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.1或2B.1C.2D.1或-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=2ax2-x-1在区间(0,1)内恰有一个零点,则实数a的取值范围是(  )
A.(-∞,-1)B.(1,+∞)C.(-1,1)D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$f(x)=\frac{ln(x+1)}{x-3}$的定义域是(-1,3)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某同学在利用“五点法”作函数f(x)=Asin(ωx+ϕ)+t(其中A>0,$ω>0,|ϕ|<\frac{π}{2}$)的图象时,列出了如表格中的部分数据.
x$-\frac{π}{4}$        $\frac{π}{12}$        $\frac{5π}{12}$$\frac{3π}{4}$$\frac{13π}{12}$                     
ωx+ϕ0$\frac{π}{2}$π$\frac{3π}{2}$
f(x)2             6                2          -22
(1)请将表格补充完整,并写出f(x)的解析式.
(2)若$x∈[-\frac{5π}{12},\frac{π}{4}]$,求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若“?x∈R,x2+ax+a=0”是真命题,则实数a的取值范围是(-∞,0]∪[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,两个顶点分别为A(-a,0),B(a,0),点M(-1,0),且3$\overrightarrow{AM}$=$\overrightarrow{MB}$,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,其中点C在x轴上方.
(1)求椭圆E的方程;
(2)若BC⊥CD,求k的值;
(3)记直线AD,BC的斜率分别为k1,k2,求证:$\frac{{k}_{1}}{{k}_{2}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知两个单位向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{3}$,则|$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$|=(  )
A.$\frac{1}{2}$B.2$\sqrt{3}$C.$\sqrt{7}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示程序框图,输出的k值为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案