精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面ABCD是一直角梯形,,,且PA=AD=DC=AB=1.

(1)证明:平面平面
(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT
(3)求异面直线所成角的余弦值


(1)证明:先得
,推出,,根据得到平面平面
(2) 。

试题分析:

(1)证明:∵,
又∵
,∵,且
,又∵∴平面平面      4′
(2)连接MN,MT,NT; ∵M、N分别为AB、AP中点 ∴MN//PB
,∴PB∥平面MNT     7′
解:∵AB中点M,AP中点N,BC中点T,,则MN//PB,MT//AC
就是异面直线AC与PB所成角(或补角)。     9′
,∴在RT△PAB中,,
在RT△ADC中,,,在RT△ACT中,,
在RT△NAT中,,∴在△MNT中,
故异面直线AC与PB所成的角的余弦值为         12′
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。本题属于立体几何中的基本问题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设m,n是异面直线,则(1)一定存在平面α,使mα,且n∥α;(2)一定存在平面α,使mα,且n⊥α;(3)一定存在平面γ,使得m,n到平面γ距离相等;(4)一定存在无数对平面α和β,使mα,nβ且α⊥β。上述4个命题中正确命题的序号是(   )
A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面和两条不重合的直线,有下列四个命题:
①若//,,则;         ②若,,则//;
③若,,则;       ④若//,//,则//.
其中正确命题的个数是
A.1个B.2个
C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是两个不同的平面,是两条不同直线.①若,则
②若,则
③若,则
④若,则以上命题正确的是            .(将正确命题的序号全部填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为使互不重合的平面,是互不重合的直线,给出下列四个命题:
         
 
 
④若
其中正确命题的序号为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若两直线相交,且∥平面,则的位置关系是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分) 如图四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底边长均为a,
且∠A1AD=∠A1AB=60°。

①求证四棱锥 A1-ABCD为正四棱锥;
②求侧棱AA1到截面B1BDD1的距离;
③求侧面A1ABB1与截面B1BDD1的锐二面角大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图,平面,点上,,四边形为直角梯形,,

(1)求证:平面
(2)求二面角的余弦值;
(3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在组合体中,ABCD—A1B1C1D1是一个长方体,P—ABCD是一个四棱锥.AB=2,BC=3,点P平面CC1D1D,且PC=PD=

(1)证明:PD平面PBC;
(2)求PA与平面ABCD所成的角的正切值;
(3)若,当a为何值时,PC//平面

查看答案和解析>>

同步练习册答案