分析 (1)由题意可得$\left\{\begin{array}{l}{2-x>0}\\{3x+6>0}\\{3x+6≥2-x}\end{array}\right.$,由此求得x的范围.
(2)当x∈[-1,2),t=${(\frac{1}{2})}^{x}$∈($\frac{1}{4}$,2],函数$y={({\frac{1}{4}})^{x-1}}-4•{({\frac{1}{2}})^x}$+2=4${(t-\frac{1}{2})}^{2}$=1,再利用二次函数的性质求得它的最值及相应的x的值.
解答 解:(1)∵log2(2-x)≤log2(3x+6),∴$\left\{\begin{array}{l}{2-x>0}\\{3x+6>0}\\{3x+6≥2-x}\end{array}\right.$,求得-1≤x<2,故不等式的解集为[-1,2).
(2)当x∈[-1,2),t=${(\frac{1}{2})}^{x}$∈($\frac{1}{4}$,2],函数$y={({\frac{1}{4}})^{x-1}}-4•{({\frac{1}{2}})^x}$+2=4${(\frac{1}{2})}^{2x}$-4•${(\frac{1}{2})}^{x}$+2=4t2-4t+2=4${(t-\frac{1}{2})}^{2}$=1,
故当t=$\frac{1}{2}$,即x=1时,函数y取得最小值为1;当t=2,即x=-1时,函数y取得最大值为10.
点评 本题主要考查指数、对数不等式的解法,二次函数的性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{100}$ | B. | $\frac{1}{121}$ | C. | $\frac{99}{100}$ | D. | $\frac{120}{121}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(-∞,\frac{1}{2}]$ | B. | $(-∞,\frac{1}{2})$ | C. | (-∞,2] | D. | (-∞,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com