精英家教网 > 高中数学 > 题目详情
14.已知log2(2-x)≤log2(3x+6)
(1)解上述不等式;
(2)在(1)的条件下,求函数$y={({\frac{1}{4}})^{x-1}}-4•{({\frac{1}{2}})^x}$+2的最大值和最小值及相应的x的值.

分析 (1)由题意可得$\left\{\begin{array}{l}{2-x>0}\\{3x+6>0}\\{3x+6≥2-x}\end{array}\right.$,由此求得x的范围.
(2)当x∈[-1,2),t=${(\frac{1}{2})}^{x}$∈($\frac{1}{4}$,2],函数$y={({\frac{1}{4}})^{x-1}}-4•{({\frac{1}{2}})^x}$+2=4${(t-\frac{1}{2})}^{2}$=1,再利用二次函数的性质求得它的最值及相应的x的值.

解答 解:(1)∵log2(2-x)≤log2(3x+6),∴$\left\{\begin{array}{l}{2-x>0}\\{3x+6>0}\\{3x+6≥2-x}\end{array}\right.$,求得-1≤x<2,故不等式的解集为[-1,2).
(2)当x∈[-1,2),t=${(\frac{1}{2})}^{x}$∈($\frac{1}{4}$,2],函数$y={({\frac{1}{4}})^{x-1}}-4•{({\frac{1}{2}})^x}$+2=4${(\frac{1}{2})}^{2x}$-4•${(\frac{1}{2})}^{x}$+2=4t2-4t+2=4${(t-\frac{1}{2})}^{2}$=1,
故当t=$\frac{1}{2}$,即x=1时,函数y取得最小值为1;当t=2,即x=-1时,函数y取得最大值为10.

点评 本题主要考查指数、对数不等式的解法,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)已知函数f(x)=$\frac{x(1-{x}^{2})}{{x}^{2}+1}$,x∈[$\frac{1}{2}$,1],求f(x)的最大值.
(2)已知函数g(x)=$\frac{ax+b}{{x}^{2}+c}$是定义在R上的奇函数,且当x=1时取得极大值1.
①求g(x)的表达式;
②若x1=$\frac{1}{2}$,xn+1=g(xn),n∈N,求证:$\frac{({x}_{2}-{x}_{1})^{2}}{{x}_{1}{x}_{2}}$+$\frac{({x}_{3}-{x}_{2})^{2}}{{x}_{3}{x}_{2}}$+…+$\frac{({x}_{n+1}-{x}_{n})^{2}}{{x}_{n}{x}_{n+1}}$≤10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{e_1},\overrightarrow{e_2}$是平面上的一组基底,
(1)已知$\overrightarrow{AB}=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow{BE}=-\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow{EC}=-2\overrightarrow{e_1}+\overrightarrow{e_2}$,且A,E,C三点共线,求实数λ的值;
(2)若$\overrightarrow{e_1},\overrightarrow{e_2}$是夹角为60°的单位向量,$\overrightarrow a=\overrightarrow{e_1}+λ\overrightarrow{e_2}$,$\overrightarrow b=-2λ\overrightarrow{e_1}-\overrightarrow{e_2}$,当-3≤λ≤5时,求$\overrightarrow a•\overrightarrow b$的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|(x-2)(x-3a-2)<0},B={x|(x-1)(x-a2-2)<0},若a>0,试问:
(1)当a=1时,求A∩B;
(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正三棱柱ABC-A1B1C1,底面边长AB=2,AB1⊥BC1,点O、O1分别是边AC,A1C1的中点,建立如图所示的空间直角坐标系.
(Ⅰ)求正三棱柱的侧棱长;
(Ⅱ)求异面直线AB1与BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个算法的程序框图如图所示,则该程序输出的结果为(  )
A.$\frac{1}{100}$B.$\frac{1}{121}$C.$\frac{99}{100}$D.$\frac{120}{121}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知角α∈(-$\frac{π}{2}$,0),cosα=$\frac{4}{5}$,则tan2α=-$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若命题“?x∈(-1,1],2x>a”是真命题,则a的取值范围是(  )
A.$(-∞,\frac{1}{2}]$B.$(-∞,\frac{1}{2})$C.(-∞,2]D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3-x及其图象曲线C
(1)当a=1时,求函数f(x)的单调区间及在(1,f(1))处的切线与曲线C的另一交点的横坐标
(2)证明:若对于任意非零实数x1,曲线C与其点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1、S2,则$\frac{S_1}{S_2}$为定值.

查看答案和解析>>

同步练习册答案