【题目】设函数.
(1)证明:,都有;
(2)若函数有且只有一个零点,求的极值.
【答案】(1)见解析;(2)时,的极大值为e1,极小值为0.
【解析】
(1)令,求导得,利用导数判断出的单调性,
从而求出的最大值,最大值小于0,则命题得证;
(2)由得,两边同时取对数整理得,则的零点
个数等于解的个数,令,求导,求出,得出
,令,求导,借助的单调性得
出的符号,从而求出极值.
(1)证明:令,则,
所以在上单调递增,在上单调递减,
所以的最大值为,即,
所以,都有.
(2)解:由得,则,所以,
所以的零点个数等于方程解的个数,
令,则,且,
所以在上单调递增,在上单调递减,又因为,
且由(1)知,,则当时,,
所以时,有且只有一个解,
所以若函数有且只有一个零点,则,此时,
∴,
令,则,
所以在上单调递减,在上单调递增,,
所以当时,,当时,,当时,,
∴当时,,则,则,
同理可得:当时,;当时,;
所以和分别是函数的极大值点和极小值点.
所以时,的极大值为e1,极小值为0.
科目:高中数学 来源: 题型:
【题目】如图,在底面边长为,侧棱长为的正四棱柱中,是侧棱上的一点,.
(1)若,求异面直线与所成角的余弦;
(2)是否存在实数,使直线与平面所成角的正弦值是?若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是_________(请把你认为正确说法的序号都填上).
(1)函数的最小正周期为
(2)若命题:“,使得”,则:“,均有”
(3)中,是的充要条件;
(4)已知点N在所在平面内,且,则点N是的重心;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用平面截圆柱面,当圆柱的轴与所成角为锐角时,圆柱面的截面是一个椭圆,著名数学家创立的双球实验证明了上述结论.如图所示,将两个大小相同的球嵌入圆柱内,使它们分别位于的上方和下方,并且与圆柱面和均相切.给出下列三个结论:
①两个球与的切点是所得椭圆的两个焦点;
②若球心距,球的半径为,则所得椭圆的焦距为2;
③当圆柱的轴与所成的角由小变大时,所得椭圆的离心率也由小变大.
其中,所有正确结论的序号是( )
A.①B.②③C.①②D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在实数m,使得为R上的奇函数,则称是位差值为m的“位差奇函数”.
(1)判断函数和是否是位差奇函数,并说明理由;
(2)若是位差值为的位差奇函数,求的值;
(3)若对于任意,都不是位差值为m的位差奇函数,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).
(1)若,直线与曲线相交于两点,求;
(2)若,求曲线上的点到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数是函数的反函数,解方程;
(2)当时,定义,设,数列的前n项和为,求及;
(3)对于任意,其中,当能作为一个三角形的三边长时,也总能作为一个三角形的三边长,试探究M的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的两个焦点为,,焦距为,直线:与椭圆相交于,两点,为弦的中点.
(1)求椭圆的标准方程;
(2)若直线:与椭圆相交于不同的两点,,,若(为坐标原点),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )
A.截止到2015年中国累计装机容量达到峰值
B.10年来全球新增装机容量连年攀升
C.10年来中国新增装机容量平均超过
D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com