精英家教网 > 高中数学 > 题目详情
已知点A(1,1),B(-1-3),直线l:x-2y+2=0.
(1)求线段AB的垂直平分线的方程;
(2)若一圆经过点A,B,且圆心在直线l上,求此圆的标准方程.
分析:(1)线段AB的中点为(0,-1),斜率为
-1
KAB
,用点斜式求得线段AB的垂直平分线的方程.
(2)设圆心坐标为 C(2b-2,b),则由题意可得 半径r=CA=CB,求出b的值,即得圆心坐标和半径,从而得到圆的标准方程.
解答:解:(1)线段AB的中点为(0,-1),斜率为
-1
KAB
=
-1
4
2
=-
1
2

故线段AB的垂直平分线的方程为y+1=-
1
2
(x-0 ),即 x+2y+2=0.
(2)设圆心坐标为 C(2b-2,b),则由题意可得 半径r=CA=CB,
∴(2b-2-1)2+(b-1)2=(2b-2+1)2+(b+3)2=r2
解得  b=0,r2=10,故圆心为 (-2,0),故此圆的标准方程为 (x+2)2+y2=10.
点评:本题考查用点斜式求直线方程,两直线垂直的性质,线段的中点公式,求圆的标准方程,求出圆心的坐标是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(1,1)是椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,F1,F2是椭圆的两焦点,且满足|AF1|+|AF2|=4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求过A(1,1)与椭圆相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,1),点B(2,y),向量
a
=(1,2),若
AB
a
,则实数y的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知点A(-1,1),P是动点,且△POA的三边所在直线的斜率满足kOP+kOA=kPA
(1)求点P的轨迹C的方程
(2)若Q是轨迹C上异于点P的一个点,且
PQ
OA
,直线OP与QA交于点M.
问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,1),B(1,1),点P是直线l:y=x-2上的一动点,当∠APB最大时,则过A,B,P的圆的方程是
x2+y2=2
x2+y2=2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足
AP
AB
AC
(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为
3
3

查看答案和解析>>

同步练习册答案