精英家教网 > 高中数学 > 题目详情
11.四边形OABC是上底为2,下底为6,底角为45°的等腰梯形,由斜二测法,画出这个梯形的直观图O1A1B1C1,在直观图中梯形的高为$\frac{\sqrt{2}}{2}$.

分析 由已知求出原图的面积,进而根据原图面积与直观图面积的关系,求出直观图的关系,设直观图的高为h,结合直观图中梯形的两底长不变,构造关于h的方程,可得答案.

解答 解:∵四边形OABC是上底为2,下底为6,底角为45°的等腰梯形,
故OABC的高为2,面积S=$\frac{1}{2}$×(2+6)×2=8,
故其直观图的面积S′=8×$\frac{\sqrt{2}}{4}$=2$\sqrt{2}$,
设直观图的高为h,则$\frac{1}{2}$×(2+6)×h=2$\sqrt{2}$,
解得:h=$\frac{\sqrt{2}}{2}$,
故答案为:$\frac{\sqrt{2}}{2}$

点评 本题考查的知识点是平面图形的直观图,其中正理理解直观图中梯形的两底长不变,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知点A(3,4)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,则当椭圆的中心到直线x=$\frac{{a}^{2}}{\sqrt{{a}^{2}-{b}^{2}}}$的距离最小时,椭圆的离心率为$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列关系不正确的是(  )
A.a>b⇒a+c>b+cB.a>b,c>0⇒ac>bc
C.a>b⇒a2>b2D.a>b且c>d⇒a+c>b+d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=bcosC+$\frac{\sqrt{3}}{3}$csinB.
(1)求B的大小;
(2)求sin2A+sin2C的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有(  )
(1)MN⊥AB;           
(2)若N为中点,则MN与AD所成角为60°;
(3)平面CDM⊥平面ABN;
(4)不存在点N,使得过MN的平面与AC垂直.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.实数x,y满足$\left\{\begin{array}{l}{x≥a}\\{y≥x}\\{x+y≤2}\end{array}\right.$(a<1),且z=2x+y的最大值是最小值的4倍,则a的值是(  )
A.$\frac{2}{11}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,2Sn=3an-3(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列bn=log3an+an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,A,B,C,D都在同一个与水平垂直的平面内,B,D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°.
(Ⅰ)试探究图中B,D间距离与另外哪两点距离相等;
(Ⅱ)已知AC=1km,求B,D间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是正方体的平面展开图,则在这个正方体中
①BM与ED成 45°角
②NF与BM是异面直线
③CN与BM成60°角
④DM与BN是异面直线
以上四个结论中,正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案