精英家教网 > 高中数学 > 题目详情

【题目】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是(  )
A.y=sinx
B.y=lnx
C.y=ex
D.y=x3

【答案】A
【解析】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,
则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,
当y=sinx时,y′=cosx,满足条件;
当y=lnx时,y′= >0恒成立,不满足条件;
当y=ex时,y′=ex>0恒成立,不满足条件;
当y=x3时,y′=3x2>0恒成立,不满足条件;
故选:A
若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.;本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义在上的函数 ),给出以下四个论断:

的周期为;②在区间上是增函数;③的图象关于点对称;④的图象关于直线对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“”的形式)__________.(其中用到的论断都用序号表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为等差数列,a3=6,a6=0.

(1){an}的通项公式;

(2)若等比数列{bn}满足b1=8,b2=a1+a2+a3,{bn}的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等比数列,前n项和为Sn(n∈N*),且 = ,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N* , bn是log2an和log2an+1的等差中项,求数列{(﹣1)n bn2}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是直角梯形, 底面 的中点.

(1)求证:平面平面

(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网的发展,移动支付(又称手机支付)越来越普遍,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是你会使用移动支付吗?其中,回答的共有个人,把这个人按照年龄分成5组:第1,第2,第3,第4,第5,然后绘制成如图所示的频率分布直方图,其中,第一组的频数为20.

(1)求的值,并根据频率分布直方图估计这组数据的众数;

(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;

(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线相交于两点.

(1)求证:“如果直线过点,那么”是真命题;

(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是 , 半径是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: (a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为 ,过点M(m,0)(m> )做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P( ,0),且 为定值.
(1)求椭圆E的方程;
(2)过点M且垂直于l的直线与椭圆E交于B,D两点,求四边形ABCD面积的最小值.

查看答案和解析>>

同步练习册答案