精英家教网 > 高中数学 > 题目详情

【题目】2002年在北京召开的国际数学家大会的会标是以我国古代数学家的弦图为基础设计的.弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图).设其中直角三角形中较小的锐角为,且,如果在弦图内随机抛掷1000米黑芝麻(大小差别忽略不计),则落在小正方形内的黑芝麻数大约为( )

A. 350B. 300C. 250D. 200

【答案】D

【解析】

由二倍角的正切公式推导出,设大正方形为ABCD,小正方形为EFGH边长为a,由tanθ,得大正方形边长为2a,利用大小正方形的面积比能求出落在小正方形内的黑芝麻数

,得,设大正方形为ABCD,小正方形为EFGH,且,由,得,则.落在小正方形内的黑芝麻数大约为.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆与直线交于两点,不与轴垂直,圆.

(1)若点在椭圆上,点在圆上,求的最大值;

(2)若过线段的中点且垂直于的直线过点,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒   次后才能使纯酒精体积与总溶液的体积之比低于10%.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面的中点.

(1)求证:∥平面

(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过的直线与椭圆相交于两点.

(1)求 的周长;

(2)设点为椭圆的上顶点,点在第一象限,点在线段上.若,求点的横坐标;

(3)设直线不平行于坐标轴,点为点关于轴的对称点,直线轴交于点.求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,动点与两定点连线的斜率之积为,记点的轨迹为曲线.

(1)求曲线的方程;

(2)若过点的直线与曲线交于两点,曲线上是否存在点使得四边形为平行四边形?若存在,求直线的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是线段上的动点,则下列说法错误的是( )

A. 当点移动至中点时,直线与平面所成角最大且为

B. 无论点上怎么移动,都有

C. 当点移动至中点时,才有相交于一点,记为点,且

D. 无论点上怎么移动,异面直线所成角都不可能是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的两个焦点为,并且经过点.

1)求双曲线的方程;

2)过点的直线与双曲线有且仅有一个公共点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上横坐标为4的点到焦点的距离为5.

1)求抛物线的方程;

2)设直线与抛物线交于两点,且是弦中点,过作平行于轴的直线交抛物线于点,得到,再分别过弦的中点作平行于轴的直线依次交抛物线于点,得到,按此方法继续下去,解决下列问题:

①求证:

②计算的面积

③根据的面积的计算结果,写出的面积,请设计一种求抛物线与线段所围成封闭图形面积的方法,并求此封闭图形的面积.

查看答案和解析>>

同步练习册答案