【题目】已知下图是四面体及其三视图,是的中点,是的中点.
(1)求四面体的体积;
(2)求与平面所成的角;
【答案】(1);(2).
【解析】
(1)由三视图得出四面体的底面是直角三角形,且可得出两直角边的边长,从而求出底面三角形的面积,由三视图可得出该四面体的高,再利用锥体的体积公式可求出四面体的体积;
(2)通过得出点到平面的距离,利用直线与平面所成角的定义得出直线与平面所成角的正弦值,从而可求出直线与平面所成角的大小.
(1)由三视图可知,四面体是直三棱锥,且底面是以为直角的直角三角形,,则的面积为,
由三视图可知,底面,且,
因此,四面体的体积为;
(2)是的中点,为的中点,
到平面的距离为,,
,
由勾股定理,,
的边上的高为,
,,
设点到平面的距离为,则,
又,,解得,
连接,则,,
设与平面所成的角为,则,
与平面所成的角为.
科目:高中数学 来源: 题型:
【题目】如图,设抛物线的准线与轴交于椭圆的右焦点为的左焦点.椭圆的离心率为,抛物线与椭圆交于轴上方一点,连接并延长其交于点, 为上一动点,且在之间移动.
(1)当取最小值时,求和的方程;
(2)若的边长恰好是三个连续的自然数,当面积取最大值时,求面积最大值以及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的直角坐标方程,并求时直线的普通方程;
(2)直线和曲线交于两点,点的直角坐标为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )
A.28B.56C.84D.120
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆()的左右两个焦点分别是、,在椭圆上运动.
(1)若对有最大值为120°,求出、的关系式;
(2)若点是在椭圆上位于第一象限的点,过点作直线的垂线,过作直线的垂线,若直线、的交点在椭圆上,求点的坐标;
(3)若设,在(2)成立的条件下,试求出、两点间距离的函数,并求出的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,直线的参数方程为,(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出直线的极坐标方程与曲线的直角坐标方程;
(2)已知与直线平行的直线过点,且与曲线交于两点,试求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为,再由乙猜甲刚才想的数字把乙猜的数字记为,且,若,则称甲乙“心有灵犀”,现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某海域有两个岛屿,岛在岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发出过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系.
(1)求曲线的标准方程;
(2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com