【题目】已知函数.
(1)若曲线上点处的切线过点,求函数的单调减区间;
(2)若函数在上无零点,求的最小值.
科目:高中数学 来源: 题型:
【题目】已知函数().
(1)当时,求函数在上的最大值和最小值;
(2)当时,是否存在正实数,当(是自然对数底数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散,分析结果和实验表明,用表示学生掌握和接受概念的能力(的值越大,表示接受能力越强),表示提出和讲授概念的时间(单位:分),可以有以下公式: .
(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?
(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?
(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(A)已知, , ,且函数的最小正周期为.
(1)求的值;
(2)若, , , ,求的值.
(B)已知, , ,且函数的最小正周期为.
(1)求的解析式;
(2)若关于的方程,在内有两个不同的解, ,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面是正三角形,且与底面垂直,底面是边长为2的菱形, 是的中点,过三点的平面交于, 为的中点,求证:
(1)平面;
(2)平面;
(3)平面平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列是公差为正数的等差数列,其前项和为,且,.
(1)求数列的通项公式;
(2)数列满足,.
①求数列的通项公式;
②是否存在正整数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=,设bn=,n∈N*。
(1)证明{bn}是等比数列(指出首项和公比);
(2)求数列{log2bn}的前n项和Tn。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com