精英家教网 > 高中数学 > 题目详情

【题目】【2017唐山模拟】如图,ABCDA1B1C1D1为正方体,连接BD,AC1,B1D1 CD1,B1C,现有以下几个结论:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是;④CB1与BD为异面直线,其中所有正确结论的序号为________.

【答案】 ①②④

【解析】 由题意可知,BD∥B1D1,又B1D1平面CB1D1,BD平面CB1D1,所以BD∥平面CB1D1

①正确;易知AC1⊥B1D1,AC1⊥B1C,又B1D1∩B1C=B1,所以AC1⊥平面CB1D1

②正确;连接AC,因为CC1⊥平面ABCD,所以∠C1AC即为AC1与底面ABCD所成的角,

易知其正切值是,③错误;由异面直线的定义可知④正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm容器Ⅱ的两底面对角线的长分别为14cm62cm.分别在容器Ⅰ和容器Ⅱ中注入水水深均为12cm现有一根玻璃棒l其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将放在容器Ⅰ中的一端置于点A处另一端置于侧棱上,没入水中部分的长度;

(2)将放在容器Ⅱ中的一端置于点E处,另一端置于侧棱上,求没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)若,求函数的单调区间;(其中是自然对数的底数)

II)设函数,当时,曲线有两个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ≤a≤1,若函数f(x)=ax2﹣2x+1在区间[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)﹣N(a).
(1)求g(a)的函数表达式;
(2)判断函数g(a)在区间[ ,1]上的单调性,并求出g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017开封高三模拟理】如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点.将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥P-DCE的外接球的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2014高考课标2理数18】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,

E为PD的中点.

(Ⅰ)证明:PB∥平面AEC;

(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率,过椭圆的左焦点且倾斜角为的直线与圆相交所得弦的长度为1.

(1)求椭圆的方程;

(2)若直线交椭圆于不同的两点,设 ,其中为坐标原点.当以线段为直径的圆恰好过点时,求证: 的面积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的身体素质情况,现从我校学生中随机抽取10人进行体能测试,测试的分数(百分制)如茎叶图所示.根据有关国家标准,成绩不低于79分的为优秀,将频率视为概率.

(1)另从我校学生中任取3人进行测试,求至少有1人成绩是“优秀”的概率;

(2)从前文所指的这10人(成绩见茎叶图)中随机选取3人,记 表示测试成绩为“优秀”的学生人数,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为(
A.y=x3
B.y=lgx
C.y=|x|
D.y=x1

查看答案和解析>>

同步练习册答案