【题目】已知某超市2019年中的12个月的收入与支出数据的折线图如图所示,则下列说法中,错误的是( )
A.该超市在2019年的12个月中,7月份的收益最高;
B.该超市在2019年的12个月中,4月份的收益最低;
C.该超市在2019年7月至12月的总收益比2109年1月至6月的总收益增长了90万元;
D.该超市在2019年1月至6月的总收益低于2109年7月至12月的总收益.
【答案】C
【解析】
根据折线图即可判定选项A和B正确,再计算出7月至12月的总收益和1月至6月的总收益,即可得到选项C错误,选项D正确.
对选项A,由折线图可知,该超市2019年的12个月中的7月份收入减去支出的值最大,
所以收益最高,故正确;
对选项B,由折线图可知,该超市2019年的12个月中的4月份收入减去支出的值最小,
所以收益最低,故正确;
对选项C,由折线图可知,2019年7月至12月的总收益为,
2019年1月至6月的总收益为,
所以7月至12月的总收益比1月至6月的总收益增长了100万元,故错误;
对选项D,由选项C知,1月至6月的总收益低于7月至12月的总收益,故正确.
故选:C
科目:高中数学 来源: 题型:
【题目】自湖北爆发新型冠状病毒肺炎疫情以来,湖北某市医护人员和医疗、生活物资严重匮乏,全国各地纷纷驰援.某运输队接到从武汉送往该市物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送240t物资.已知每辆卡车每天往返的次数为A型卡车5次,B型卡车4次,每辆卡车每天往返的成本A型卡车1200元,B型卡车1800元,则每天派出运输队所花的成本最低为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的短轴长为2,直线被椭圆截得的线段长为,为坐标原点.
(1)求椭圆的方程;
(2)是否存在过点且斜率为的直线,与椭圆交于、两点时,作线段的垂直平分线分别交轴、轴于、,垂足为,使得与的面积相等,若存在,试求出直线的方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为.(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,点的极坐标为,直线的极坐标方程为.
(1)求的直角坐标和 l的直角坐标方程;
(2)把曲线上各点的横坐标伸长为原来的倍,纵坐标伸长为原来的倍,得到曲线,为上动点,求中点到直线距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且倾斜角为.
(1)求曲线的极坐标方程和直线的参数方程;
(2)已知直线与曲线交于,满足为的中点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为,(为参数),直线的普通方程为,设与的交点为,当变化时,记点的轨迹为曲线. 在以原点为极点,轴正半轴为极轴的极坐标系中,直线的方程为.
(1)求曲线的普通方程;
(2)设点在上,点在上,若直线与的夹角为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】东京夏季奥运会推迟至2021年7月23日至8月8日举行,此次奥运会将设置4 100米男女混泳接力赛这一新的比赛项目,比赛的规则是:每个参赛国家派出2男2女共计4名运动员参加比赛,按照仰泳蛙泳蝶泳自由泳的接力顺序,每种泳姿100米且由1名运动员完成,且每名运动员都要出场.若中国队确定了备战该项目的4名运动员名单,其中女运动员甲只能承担仰泳或者自由泳,男运动员乙只能承担蝶泳或者蛙泳,剩下2名运动员四种泳姿都可以承担,则中国队参赛的安排共有( )
A.144种B.8种C.24种D.12种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com