精英家教网 > 高中数学 > 题目详情
2.在△ABC中,AB=2$\sqrt{3}$,BC=3,∠ABC=30°,则AC=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{21-6\sqrt{3}}$D.3

分析 由条件利用余弦定理的应用,求得AC的值.

解答 解:△ABC中,∵AB=2$\sqrt{3}$,BC=3,∠ABC=30°,则由余弦定理可得
AC2=AB2+BC2-2AB•BC•cosB=12+9-12$\sqrt{3}$•$\frac{\sqrt{3}}{2}$=3,
∴AC=$\sqrt{3}$,
故选:A.

点评 本题主要考查余弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.直线l:ax+by-3a=0与双曲线$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}$=1只有一个公共点,则l共有3条,它们的方程是x=3或y=±$\frac{2}{3}$(x-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面说法正确的是(  )
A.平面内的任意两个向量都共线B.空间的任意三个向量都不共面
C.空间的任意两个向量都共面D.空间的任意三个向量都共面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.要得到函数y=3sin(2x+$\frac{π}{3}$)的图象,只需要将函数y=3cos2x的图象(  )
A.向右平行移动$\frac{π}{12}$个单位B.向左平行移动$\frac{π}{12}$个单位
C.向右平行移动$\frac{π}{6}$个单位D.向左平行移动$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求(2x-1)6的展开式的中间项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1时有极值0.
(1)求常数a,b的值; 
(2)求f(x)的单调区间.  
(3)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若非空集合M是集合N的真子集,则“a∈M或a∈N”是“a∈M∩N”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.心理学家分析发现视觉和空间想象力与性别有关,某数学兴趣小组为了验证这个结论,按分层抽样的方法从数学兴趣小组中抽取59名同学(男30女20),给这些同学每人一道几何题和一道代数题,让每名同学自由选择一道题解答,则选题情况如表所示.
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否根据此判断有97.5%的把握认为视觉和空间想象力与性别有关?
(2)现从选择做几何题的8名女同学(包括甲、乙)中任意抽取2名,对这2名女同学的答题情况进行研究,记甲、乙2名女同学被抽到的人数为X,求X的分布列及数学期望E(X).
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x1,x2是函数f(x)=x2-ax+b(a>0,b>0)的两个不同的零点,且x1,-2,x2成等比数列,若这三个数重新排序后成等差数列,则a+b的值等于(  )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案