精英家教网 > 高中数学 > 题目详情

【题目】某桶装水经营部每天的房租,人员工资等固定成本为200元,每桶水的进价是5元,销售价(元)与日均销售量(桶)的关系如下表,为了收费方便,经营部将销售价定为整数,并保持经营部每天盈利.

6

7

8

9

10

11

12

480

440

400

360

320

280

240

1)写出的值,并解释其实际意义;

2)求表达式,并求其定义域;

3)求经营部利润表达式,请问经营部怎样定价才能获得最大利润?

【答案】(1),实际意义表示价格每上涨1元,销售量减少40桶.

(2)

3)经营部将价格定在11元或12元时,才能获得最大利润.

【解析】

1)根据题意计算即可,表示价格每上涨1元,销售量减少40桶(2)设,由待定系数法求解即可(3)由题意获利为,利用二次函数求最值即可.

1)由表格数据可知

实际意义表示价格每上涨1元,销售量减少40桶.

2)由(1)知:设

解得:

3)设经营部获得利润元,

由题意得

时,有最大值,但

∴当时,取得最大值.

答:经营部将价格定在11元或12元时,才能获得最大利润.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以为极点,轴非负半轴为极轴建立极坐标系. 直线的极坐标方程是.

(Ⅰ)求圆的极坐标方程和直线的直角坐标方程;

(Ⅱ)射线与圆的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“克拉茨猜想”又称“猜想”,是德国数学家洛萨克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数,如果是偶数,就将它减半;如果为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.己知正整数经过6次运算后得到1,则的值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知生产线生产的产品为合格品的概率分别为.

(1)从生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.

(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.

①已知生产线的不合格产品返工后每件产品可分别挽回损失元和元。若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?

②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①函数是奇函数;

②将函数的图像向左平移个单位长度,得到函数的图像;

③若是第一象限角且,则

是函数的图像的一条对称轴;

⑤函数的图像关于点中心对称。

其中,正确的命题序号是______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右顶点分别为,点在椭圆上,且的面积为.

(1)求椭圆的方程;

(2)设直线不经过点且与椭圆交于两点,若直线与直线的斜率之积为,证明:直线过顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地西红柿从21号起开始上市,通过市场调查,得到西红柿种植成本(单位:元/100)与上市时间(21日的天数,单位:天)的数据如下表:

时间

50

110

250

成本

150

108

150

1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本与上市时间的变化关系:

2)利用(1)中选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数yf(x)的图象关于直线x=-对称,当x∈时,函数f(x)Asin(ωxφ)的图象如图所示.

(1)求函数yf(x)上的表达式;

(2)求方程f(x)的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某盒子中共有个小球,编号为号至号,其中有个红球、个黄球和个绿球,这些球除颜色和编号外完全相同.

1)若从盒中一次随机取出个球,求取出的个球中恰有个颜色相同的概率;

2)若从盒中逐一取球,每次取后立即放回,共取次,求恰有次取到黄球的概率;

3)若从盒中逐一取球,每次取后不放回,记取完黄球所需次数为,求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案