精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程与直线的极坐标方程;

(2)若射线与曲线交于点(不同于原点),与直线交于点,直线与极轴所在直线交于点.求的值.

【答案】(1);(2)

【解析】

1)将曲线的极坐标方程变为,根据极坐标与直角坐标互化原则得到直角坐标方程;将直线的参数方程化为普通方程,再根据极坐标与直角坐标互化原则得到极坐标方程;(2)将代入曲线和直线的极坐标方程,求得的极坐标;将代入直线的极坐标方程,求得点极坐标;根据三角形面积公式求得,根据求得结果.

(1)曲线的极坐标方程为:

直线的参数方程为:为参数)

消去参数得:

极坐标方程为

(2)将代入曲线的极坐标方程得:

的极坐标为:

代入直线的极坐标方程得:,解得:

的极坐标为:

代入直线的极坐标方程,解得

的极坐标为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极值;

(2)若函数有两个零点,求实数取值范围;

(3)若当时,恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国国际智能产业博览会(智博会)每年在重庆市举办一届,每年参加服务的志愿者分“嘉宾”、“法医”等若干小组年底,来自重庆大学、西南大学、重庆医科大学、西南政法大学的500名学生在重庆科技馆多功能厅参加了“志愿者培训”,如图是四所大学参加培训人数的不完整条形统计图,现用分层抽样的方法从中抽出50人作为2019年中国国际智博会服务的志愿者.

(1)若“嘉宾”小组需要2名志愿者,求这2人分别来自不同大学的概率(结果用分数表示)

(2)若“法医”小组的3名志愿者只能从重庆医科大学或西南政法大学抽出,用表示抽出志愿者来自重庆医科大学的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到直线的距离比到定点的距离大1.

(1)求动点的轨迹的方程.

(2)若为直线上一动点,过点作曲线的两条切线,切点为的中点.

①求证:轴;

②直线是否恒过一定点?若是,求出这个定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四人进行一项益智游戏,方法如下:第一步:先由四人看着平面直角坐标系中方格内的16个棋子(如图所示),甲从中记下某个棋子的坐标;第二步:甲分别告诉其他三人:告诉乙棋子的横坐标.告诉丙棋子的纵坐标,告诉丁棋子的横坐标与纵坐标相等;第三步:由乙、丙、丁依次回答.对话如下:“乙先说我无法确定.丙接着说我也无法确定.最后丁说我知道”.则甲记下的棋子的坐标为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线上任意一点,,且点为线段的中点.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)若为点关于原点的对称点,过的直线交曲线 两点,直线交直线于点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1234}和集合B={123n},其中n≥5.从集合A中任取三个不同的元素,其中最小的元素用S表示;从集合B中任取三个不同的元素,其中最大的元素用T表示.记XTS.

(1)当n5时,求随机变量X的概率分布和数学期望

(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,EA⊥平面ABCD,四边形ABCD为等腰梯形,,且,AD=AE=1,∠ABC=60°,EF=AC,且EFAC.

(Ⅰ)证明:AB⊥CF;

(Ⅱ)求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln+ax﹣1(a≠0).

(I)求函数f(x)的单调区间;

(Ⅱ)已知g(x)+xf(x)=﹣x,若函数g(x)有两个极值点x1,x2(x1<x2),求证:g(x1)<0.

查看答案和解析>>

同步练习册答案