精英家教网 > 高中数学 > 题目详情
为了解高一年级女生的身体状况,从该高一年级女生中抽取一部分进行“掷铅球”的项目测试,把获得的数据分成[1,3)[3,5)[5,7)[7,9)[9,11)五组(假设测试成绩都不超过11米),画出的频率分布直方图如图所示.已知有4名学生的成绩在9米到11米之间.
(1)求实数a的值及参加“掷铅球”项目测试的人数;
(2)若从此次测试成绩最好和最差的两组中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生自不同组的概率.
考点:列举法计算基本事件数及事件发生的概率,频率分布直方图
专题:概率与统计
分析:(1)根据频率分布直方图,求出a的值以及参加测试的人数;
(2)求出最好和最差的两组的人数,用列举法得出从中随机抽取2人的基本事件数和所抽的2名学生来自不同组基本事件数,求出概率.
解答: 解:(1)根据频率分布直方图,得;
(0.025+0.075+0.200+0.150+a)×2=1,
解得a=0.05,
参加测试的人数是
4
0.05×2
=40;
(2)最差的人数是40×0.025×2=2,记为A、B,
最好的人数是4,记为a、b、c、d;
从这6人中随机抽取2人,基本事件有
AB、Aa、Ab、Ac、Ad、Ba、Bb、Bc、Bd、ab、ac、ad、bc、bd、cd,共15种,
所抽的2名学生来自不同组基本事件有
Aa、Ab、Ac、Ad、Ba、Bb、Bc、Bd,共8种;
它的概率为P=
8
15
点评:本题考查了频率分布直方图的应用问题,也考查了古典概率的应用问题,解题时应用列举法求出概率,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图程序框图.若输入n=20,则输出的S值是(  )
A、
10
21
B、
20
21
C、
5
11
D、
10
11

查看答案和解析>>

科目:高中数学 来源: 题型:

3
-3
(x2-2sinx)dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n∈N*,数列{dn}满足dn=
3+(-1)n
2
,数列{an}满足an=d1+d2+d3+…+d2n;数列{bn}为公比大于1的等比数列,且b2,b4为方程x2-20x+64=0的两个不相等的实根.
(Ⅰ)求数列{an}和数列{bn}的通项公式;
(Ⅱ)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项,…删去后剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2015项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,则输出的结果S=(  )
A、11B、26C、57D、120

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=2,an=
an+1-1
an+1+1
,其前n项积Tn,则T2015=(  )
A、1B、-6C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)和g(x)满足:①在区间[a,b]上均有定义;②函数y=f(x)-g(x)在区间[a,b]上至少有一个零点,则称f(x)和g(x)在[a,b]上具有关系G.
(1)若f(x)=lgx,g(x)=3-x,试判断f(x)和g(x)在[1,4]上是否具有关系G,并说明理由;
(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有关系G,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,4,x),
b
=(2,y,2),若|
a
|=6,
a
b
,则x+y的值是(  )
A、-3或1B、3或-1
C、-3D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+Dx+Ey+3=0,圆C关于直线x+y-1=0对称,圆心在第二象限,半径为
2

(1)求圆C的方程;
(2)已知不过原点的直线l与圆C相切,且与x轴、y轴上的截距相等,求直线l的方程.

查看答案和解析>>

同步练习册答案