精英家教网 > 高中数学 > 题目详情
已知变量x与y负相关,且由观测数据算得样本平均数
.
x
=4,
.
y
=4.5,则由该观测数据算得的线性回归方程可能是(  )
A、
y
=0.4x+2.3
B、
y
=2x-2.4
C、
y
=-0.3x-3.3
D、
y
=-2x+12.5
考点:线性回归方程
专题:应用题,概率与统计
分析:利用变量x与y负相关,排除选项,然后利用回归直线方程经过样本中心验证即可.
解答: 解:变量x与y负相关,排除选项A,B;
回归直线方程经过样本中心,
.
x
=4,
.
y
=4.5,代入C不成立,代入D成立.
故选:D
点评:本题考查回归直线方程的求法,回归直线方程的特征,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(x-a)lnx.
(Ⅰ)若直线y=x+b与f(x)在x=1处相切,求实数a,b的值;
(Ⅱ)若a>0,求证:f(x)存在唯一极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x2+a的图象在点x=0处的切线为y=bx(e为自然对数的底数).
(1)求函数f(x)的解析式;
(2)当x∈R时,求证:f(x)≥-x2+x;
(3)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示程序框图的算法,输出的结果为(  )
A、log910
B、lg11
C、2
D、log310

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a7=-11,a2=4a3
(1)求{an}的通项公式;
(2)求|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-(1+a)x-1
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当a<1时,证明:对任意的x∈(0,+∞),有f(x)<-
lnx
x
-a(x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

我校开设了“足球社”、“诗雨文学社”、“旭爱公益社”三个社团,三个社团参加的人数如下表所示:
社团足球社诗雨文学社旭爱公益社
人数320240200
已知“足球社”社团抽取的同学8人.
(1)求样本容量n的值和从“诗雨文学社”社团抽取的同学的人数;
(2)若从“诗雨文学社”社团抽取的同学中选出2人担任该社团正、副社长的职务,已知“诗雨文学社”社团被抽取的同学中有2名女生,求至少有1名女同学被选为正、副社长的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ex+x2+x+1与g(x)的图象关于直线2x-y-3=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为(  )
A、
5
5
B、
5
C、
2
5
5
D、2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,点A(1,
2
16
),Pn(1-
1
2n
,0)(n∈N*).记直线APn的倾斜角为αn,∠PnAPn+1n,△PnAPn+1的面积为Sn,求:
(1)α4(用反三角函数值表示);
(2)Sn及则 
lim
n→∞
(S1+S2+…+Sn);
(3)θn的最大值及相应n的值.

查看答案和解析>>

同步练习册答案