【题目】如图所示,在棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,PA=AD=DC=2,AB=4且AB∥CD,∠BAD=90°.
(1)求证:BC⊥PC;
(2)求PB与平面PAC所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).是曲线上的动点,将线段绕点顺时针旋转得到线段,设点的轨迹为曲线.以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(I)求曲线,的极坐标方程;
(II)在(I)的条件下,若射线与曲线,分别交于两点(除极点外),且有定点,求面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面ABCD,底面ABCD为梯形,,,且.
(1)在PD上是否存在一点F,使得平面PAB,若存在,找出F的位置,若不存在,请说明理由;
(2)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂为了评估某种零件生产过程的情况,制定如下规则:若零件的尺寸在,则该零件的质量为优秀,生产过程正常;若零件的尺寸在且不在,则该零件的质量为良好,生产过程正常;若零件的尺寸在且不在,则该零件的质量为合格,生产过程正常;若零件的尺寸不在,则该零件不合格,同时认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,(其中为样本平均数,为样本标准差)下面是检验员从某一天生产的一批零件中随机抽取的20个零件尺寸的茎叶图(单位:cm)经计算得,其中为抽取的第个零件的尺寸,.
(1)利用该样本数据判断是否需对当天的生产过程进行检查;
(2)利用该样本,从质量良好的零件中任意抽取两个,求抽取的两个零件的尺寸均超过的概率;
(3)剔除该样本中不在的数据,求剩下数据的平均数和标准差(精确到0.01)
参考数据:,,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,试求函数图像过点的切线方程;
(2)当时,若关于的方程有唯一实数解,试求实数的取值范围;
(3)若函数有两个极值点,且不等式恒成立,试求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com