精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在棱锥P-ABCD中,PA平面ABCD,底面ABCD为直角梯形,PA=AD=DC=2,AB=4且ABCDBAD=90°.

(1)求证:BCPC

(2)PB与平面PAC所成角的正弦值.

【答案】(1)详见解析;(2).

【解析】

试题(1)连接,取的中点,连接,所以为等腰直角三角形,故,而,所以平面,所以.以为坐标原点,分别为轴建立空间直角坐标系,利用直线的方向向量和平面的法向量,计算得线面角的正弦值为.

试题解析:

(1)在直角梯形中,

中点,连接

则四边形为正方形,

,

为等腰直角三角形,

又∵平面平面

平面

平面,所以.

(2)以为坐标原点,分别为轴建立如图所示的坐标系,

.

由(1)知即为平面的一个法向量,

与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).是曲线上的动点,将线段点顺时针旋转得到线段,设点的轨迹为曲线.以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(I)求曲线的极坐标方程;

(II)在(I)的条件下,若射线与曲线分别交于两点(除极点外),且有定点,求面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD,底面ABCD为梯形,,且

1)在PD上是否存在一点F,使得平面PAB,若存在,找出F的位置,若不存在,请说明理由;

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂为了评估某种零件生产过程的情况,制定如下规则:若零件的尺寸在,则该零件的质量为优秀,生产过程正常;若零件的尺寸在且不在,则该零件的质量为良好,生产过程正常;若零件的尺寸在且不在,则该零件的质量为合格,生产过程正常;若零件的尺寸不在,则该零件不合格,同时认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,(其中为样本平均数,为样本标准差)下面是检验员从某一天生产的一批零件中随机抽取的20个零件尺寸的茎叶图(单位:cm)经计算得,其中为抽取的第个零件的尺寸,.

1)利用该样本数据判断是否需对当天的生产过程进行检查;

2)利用该样本,从质量良好的零件中任意抽取两个,求抽取的两个零件的尺寸均超过的概率;

3)剔除该样本中不在的数据,求剩下数据的平均数和标准差(精确到0.01)

参考数据:,,,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线处的切线方程;

2)当时,求的极值点;

3)若R上的单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求的单调区间;

(2)当时,求证:对于恒成立;

(3)若存在,使得当时,恒有成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间;

2)若函数有两个零点,求满足条件的最小正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,试求函数图像过点的切线方程;

(2)当时,若关于的方程有唯一实数解,试求实数的取值范围;

(3)若函数有两个极值点,且不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

(Ⅰ)令,求的单调区间;

(Ⅱ)当时,直线的图像有两个交点,且,求证:.

查看答案和解析>>

同步练习册答案