精英家教网 > 高中数学 > 题目详情
6.已知lg339=5.826,求lg3.39之值.

分析 根据对数的运算性质即可求出.

解答 解:∵lg339=5.826
∴lg3.39=lg339÷100=lg339-lg100=5.826-2=3.826.

点评 本题考查了对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.淮北市文明创建活动正在轰轰烈烈的开展,第三方评估机构拟了解我市中小学生“社会主义核心价值观”掌握情况,已知不同学段学生掌握情况有差异,现从中小学生中抽取部分学生进行调查,在下面的抽样方法中,最合理的抽样方法是(  )
A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数$f(x)=2{({log_2}x)^2}-2a{log_2}x+b$,已知当$x=\frac{1}{2}$时,f(x)有最小值-8.
(1)求a与b的值;
(2)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=x+$\frac{2}{x}$.
(1)判断f(x)的奇偶性,并证明你的结论.
(2)用函数单调性的定义证明函数f(x)在[$\sqrt{2}$,+∞)内是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=loga(6-ax)在[0,1]上为减函数,则a的取值范围是(  )
A.(0,1)B.(1,6]C.(1,6)D.[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列关系式中,成立的是(  )
A.${log_3}4>1>{log_{\frac{1}{3}}}10$B.${log_{\frac{1}{3}}}10>1>{log_3}4$
C.${log_3}4>{log_{\frac{1}{3}}}10>1$D.${log_{\frac{1}{3}}}10>{log_3}4>1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=2cos2$\frac{x}{2}$-3的最小值和周期分别为(  )
A.-1,πB.-3,2πC.-1,2πD.-3,π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.用导数证明:$\frac{si{n}^{8}x}{8}$-$\frac{co{s}^{8}x}{8}$-$\frac{si{n}^{6}x}{3}$+$\frac{co{s}^{6}x}{6}$+$\frac{si{n}^{4}x}{4}$=$\frac{1}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.△ABC中的三个内角分别为A,B,C,己知BC=4,AC=5,C=2A,则AB=6.

查看答案和解析>>

同步练习册答案