精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求函数的零点;

2)设函数的图象与函数的图象交于两点,求证:

3)若,且不等式对一切正实数x恒成立,求k的取值范围.

【答案】(1)x=1 (2)证明见解析 (3)

【解析】

1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;

2)转化思想,要证 ,即证 ,即证,构造函数进而求证;

3)不等式 对一切正实数恒成立,,设,分类讨论进而求解.

解:(1)令,所以

时,上单调递增;

时,单调递减;

所以,所以的零点为

2)由题意

要证 ,即证,即证

,则,由(1)知,当且仅当时等号成立,所以

,所以原不等式成立.

3)不等式 对一切正实数恒成立,

,△

①当△时,即时,恒成立,故单调递增.

于是当时,,又,故

时,,又,故

又当时,

因此,当时,

②当△,即时,设的两个不等实根分别为

,于是

故当时,,从而单调递减;

时,,此时,于是

舍去,

综上,的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合,设集合是集合的非空子集,中的最大元素和最小元素之差称为集合的直径. 那么集合所有直径为的子集的元素个数之和为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是单调递增函数,求实数a的取值范围;

2)若恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,分别是的中点,则(

A. B. C. 平面 D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】惰性气体分子为单原子分子,在自由原子情形下,其电子电荷分布是球对称的.负电荷中心与原子核重合,但如两个原子接近,则彼此能因静电作用产生极化(正负电荷中心不重合),从而导致有相互作用力,这称为范德瓦尔斯相互作用.今有两个相同的惰性气体原子,它们的原子核固定,原子核正电荷的电荷量为,这两个相距为的惰性气体原子组成体系的能量中有静电相互作用能,其中为静电常量,分别表示两个原子负电中心相对各自原子核的位移,且都远小于,当远小于1时,,则的近似值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)求函数的零点和极值;

(3)若对任意,都有成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1为椭圆的左焦点,在椭圆上,PF1x轴.

1)求椭圆的方程:

2)已知直线l与椭圆交于AB两点,且坐标原点O到直线l的距离为的大小是否为定值?若是,求出该定值:若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个函数

(Ⅰ)当时,求在区间上的最大值;

(Ⅱ)求证:对任意,不等式都成立.

查看答案和解析>>

同步练习册答案