【题目】已知函数.
(1)求函数的零点;
(2)设函数的图象与函数的图象交于,两点,求证:;
(3)若,且不等式对一切正实数x恒成立,求k的取值范围.
【答案】(1)x=1 (2)证明见解析 (3)
【解析】
(1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;
(2)转化思想,要证 ,即证 ,即证,构造函数进而求证;
(3)不等式 对一切正实数恒成立,,设,分类讨论进而求解.
解:(1)令,所以,
当时,,在上单调递增;
当时,,在单调递减;
所以,所以的零点为.
(2)由题意, ,
要证 ,即证,即证,
令,则,由(1)知,当且仅当时等号成立,所以,
即,所以原不等式成立.
(3)不等式 对一切正实数恒成立,
,
设,,
记,△,
①当△时,即时,恒成立,故单调递增.
于是当时,,又,故,
当时,,又,故,
又当时,,
因此,当时,,
②当△,即时,设的两个不等实根分别为,,
又,于是,
故当时,,从而在单调递减;
当时,,此时,于是,
即 舍去,
综上,的取值范围是.
科目:高中数学 来源: 题型:
【题目】惰性气体分子为单原子分子,在自由原子情形下,其电子电荷分布是球对称的.负电荷中心与原子核重合,但如两个原子接近,则彼此能因静电作用产生极化(正负电荷中心不重合),从而导致有相互作用力,这称为范德瓦尔斯相互作用.今有两个相同的惰性气体原子,它们的原子核固定,原子核正电荷的电荷量为,这两个相距为的惰性气体原子组成体系的能量中有静电相互作用能,其中为静电常量,,分别表示两个原子负电中心相对各自原子核的位移,且和都远小于,当远小于1时,,则的近似值为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F1为椭圆的左焦点,在椭圆上,PF1⊥x轴.
(1)求椭圆的方程:
(2)已知直线l与椭圆交于A,B两点,且坐标原点O到直线l的距离为的大小是否为定值?若是,求出该定值:若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com