【题目】在直角坐标系xOy中,曲线C1的参数方程为 (t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2=4 ρsin(θ+ )﹣4.
(Ⅰ)求曲线C2的直角坐标方程,并指出其表示何种曲线;
(Ⅱ)若曲线C1与曲线C2交于A、B两点,求|AB|的最大值和最小值.
【答案】解:(Ⅰ)∵曲线C2的极坐标方程为ρ2=4 ρsin(θ+ )﹣4=4ρsinθ+4ρcosθ﹣4, ∴由ρ2=x2+y2 , ρsinθ=y,ρcosθ=x,
得到曲线C2的直角坐标方程为:x2+y2=4y+4x﹣4,
整理,得:(x﹣2)2+(y﹣2)2=4,
∴曲线C2表示以(2,2)为圆心,以2为半径的圆.
(Ⅱ)∵曲线C1的参数方程为 (t为参数),
∴消去参数得曲线C1的直角坐标方程为tanαx﹣y﹣tanα+1=0,
当曲线C1过圆心C2(2,2)时,tanα=1,α=45°,
此时|AB|取最大值2r=2 .
圆心C2(2,2)到曲线C1:tanαx﹣y﹣tanα+1=0的距离为:
d= = ,
|AB|=2× =2 =2 ,
∴当tanα=0,即α=0时,|AB|取最小值2
【解析】(Ⅰ)∵曲线C2的极坐标方程转化为ρ2=4ρsinθ+4ρcosθ﹣4,由ρ2=x2+y2 , ρsinθ=y,ρcosθ=x,得:(x﹣2)2+(y﹣2)2=4,由此得到曲线C2表示以(2,2)为圆心,以2为半径的圆.(Ⅱ)消去参数得曲线C1的直角坐标方程为tanαx﹣y﹣tanα+1=0,求出圆心C2(2,2)到曲线C1:tanαx﹣y﹣tanα+1=0的距离d,|AB|=2× ,由此能求出结果.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an﹣2,若数列{bn}满足bn=10﹣log2an , 则使数列{bn}的前n项和取最大值时的n的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax﹣lnx,x∈(0,e],g(x)= ,其中e是自然对数的底数,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+ ;
(Ⅲ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n都有an= Sn+2成立.若bn=log2an , 则b1008=( )
A.2017
B.2016
C.2015
D.2014
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(Ⅰ)证明:EM⊥BF;
(Ⅱ)求平面BEF与平面ABC所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=aln(x+1)﹣x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式 >1恒成立,则实数a的取值范围为( )
A.[15,+∞)
B.(﹣∞,15]
C.(12,30]
D.(﹣12,15]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为弘扬传统文化,某校举行诗词大赛.经过层层选拔,最终甲乙两人进入决赛,争夺冠亚军.决赛规则如下:①比赛共设有五道题;②比赛前两人答题的先后顺序通过抽签决定后,双方轮流答题,每次回答一道,;③若答对,自己得1分;若答错,则对方得1分;④先得 3 分者获胜.已知甲、乙答对每道题的概率分别为 和 ,且每次答题的结果相互独立.
(Ⅰ)若乙先答题,求甲3:0获胜的概率;
(Ⅱ)若甲先答题,记乙所得分数为 X,求X的分布列和数学期望 EX.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.命题p:“ ”,则?p是真命题
B.命题“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
C.“x=﹣1”是“x2+2x+3=0”的必要不充分条件
D.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上为增函数”的充要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com