精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx,g(x)=xe-x
(1)当x∈R时,求函数f(x)的单调递减区间;
(2)若对任意x1∈[1,3],x2∈[0,$\frac{π}{2}$],不等式g(x1)+a+3>f(x2)恒成立,求实数a的取值范围.

分析 (1)先利用将次公式和两角和的正弦公式将f(x)化简得f(x)=2sin(2x+$\frac{π}{6}$)+1,令2kπ$+\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$解出单调递减期间;
(2)令g(x1)+a+3在[1,3]上的最小值大于f(x2)在区间$[0,\frac{π}{2}]$上的最大值即可.

解答 解:(Ⅰ)$f(x)=cos2x+1+\sqrt{3}sin2x=2sin(2x+\frac{π}{6})+1$.
当$2kπ+\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{3π}{2}$,
即$kπ+\frac{π}{6}≤x≤kπ+\frac{2π}{3}$,k∈Z时,函数f(x)单调递减,
所以函数f(x)的单调递减区间为$[kπ+\frac{π}{6},kπ+\frac{2π}{3}]k∈Z$.
(Ⅱ)对任意${x_1}∈[1,3],{x_2}∈[0,\frac{π}{2}]$,要使不等式g(x1)+a+3>f(x2)恒成立,
只需g(x1)+a+3在[1,3]上的最小值大于f(x2)在区间$[0,\frac{π}{2}]$上的最大值.
当$x∈[{0\;,\frac{π}{2}}]$时,有 $2x+\frac{π}{6}∈[{\frac{π}{6}\;,\frac{7π}{6}}]$,
∴当$2x+\frac{π}{6}=\frac{π}{2}$即$x=\frac{π}{6}$时,$sin(2x+\frac{π}{6})$有最大值1,f(x)有最大值3.
所以当${x_2}∈[0,\frac{π}{2}]$时,f(x2)的最大值为3.
又由g(x)=x e-x得   g′(x)=e-x-x e-x=(1-x) e-x,当1≤x≤3时,g'(x)≤0.
∴g(x)在区间[1,3]上是减函数,当x1∈[1,3]时,g(x1)有最小值$g(3)=\frac{3}{{{{e}^3}}}$.
所以g(x1)+a+3的最小值为$\frac{3}{{{{e}^3}}}+a+3$.
令$\frac{3}{{{{e}^3}}}+a+3$>3得  $a>-\frac{3}{{{{e}^3}}}$,所以实数a的取值范围是$(-\frac{3}{{{{e}^3}}},+∞)$.

点评 本题考查了三角函数的单调区间和函数恒成立问题,将问题转化为函数的最值问题是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设f(x)和g(x)的图象在[a,b]上是连续不断的,且f(a)<g(a),f(b)>g(b),试证明:在(a,b)内至少存在一点x0,使f(x0)=g(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,正三棱柱ABC-A1B1C1的所有棱长都为4,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求直线AB1与平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,若AP=1,AD=$\sqrt{3}$,三棱锥P-ABD的体积V=$\frac{\sqrt{3}}{4}$,则A到平面PBC的距离是$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,线段AB,BD在平面a内,BD⊥AB,线段AC⊥a,且AB=a,BD=b,Ac=c,求C、D间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m•2t+2•$\frac{1}{{2}^{t}}$ (t≥0,并且m>0).
(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;
(2)若物体的温度总不低于2摄氏度,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知正四棱锥V-ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=2$\sqrt{2}$,VC=$\sqrt{3}$.
(1)求正四棱锥V-ABCD的体积.
(2)求正四棱锥V-ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)同时满足:①对于定义域上的任意x,恒有f(x)+f(-x)=0;②对于定义域上的任意x1,x2.当x1≠x2时,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0.则称函数f(x)为“理想函数”,则下列四个函数中:①f(x)=$\frac{1}{2}$;②f(x)=x2;③f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2},x<0}\end{array}\right.$;④f(x)=log${\;}_{\frac{1}{2}}$($\sqrt{{x}^{2}+1}$+x)可以称为“理想函数”的有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系中,第一象限内的动点P(x,y)满足:
①与点A(1,1)、点B(-1,-1)连线斜率互为相反数;
②x+y<$\frac{5}{2}$.
(1)求动点P的轨迹C1的方程;
(2)若存在直线m与C1和椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)均相切于同一点,求椭圆C2离心率e的取值范围.

查看答案和解析>>

同步练习册答案