精英家教网 > 高中数学 > 题目详情
在椭圆+=1上取三点,其横坐标满足x1+x3=2x2,三点顺次与某一焦点连接的线段长是r1、r2、r3,则有(    )

A.r1、r2、r3成等差数列                     B.r1、r2、r3成等比数列

C.成等差数列               D.成等比数列

A

解析:设F为左焦点,由ri=a-exi(焦半径公式)分别代入题设解之.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=0
,若过A,Q,F2三点的圆恰好与直线l:x-
3
y-3=0
相切.过定点M(0,2)的直线l1与椭圆C交于G,H两点(点G在点M,H之间).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由;
(Ⅲ)若实数λ满足
MG
MH
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交z轴负半轴于点Q,且2
F1F2
+
F2Q
=0
,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H两点(点G在点M,H之间).
(I)求椭圆C的方程;
(Ⅱ)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)在平面直角坐标系xOy中,椭圆C:
x2
m
+
y2
8-m
=1.
(1)若椭圆C的焦点在x轴上,求实数m的取值范围;
(2)若m=6,
①P是椭圆C上的动点,M点的坐标为(1,0),求PM的最小值及对应的点P的坐标;
②过椭圆C的右焦点F 作与坐标轴不垂直的直线,交椭圆C于A,B两点,线段AB的垂直平分线l交x轴于点N,证明:
AB
FN
 是定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在椭圆+=1上取三点,其横坐标满足x1+x3=2x2,三点顺次与某一焦点连接的线段长是r1、r2、r3,则有(    )

A.r1、r2、r3成等差数列                   B.r1、r2、r3成等比数列

C.成等差数列               D.成等比数列

查看答案和解析>>

同步练习册答案