精英家教网 > 高中数学 > 题目详情
18.某公司现有职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20人进行体检,如果采用分层抽样的方法,则职员、中级管理人员和高级管理人员应该各抽取人数为(  )
A.8,15,7B.16,2,2C.16,3,1D.12,5,3

分析 根据所给的三个层次的人数,得到公司的总人数,利用要抽取的人数除以总人数,得到每个个体被抽到的概率,用概率乘以三个层次的人数,得到结果.

解答 解:∵公司现有职员160人,中级管理人员30人,高级管理人员10人
∴公司共有160+30+10=200人,
∵要从其中抽取20个人进行身体健康检查,
∴每个个体被抽到的概率是$\frac{20}{200}$=$\frac{1}{10}$,
∴职员要抽取160×$\frac{1}{10}$=16人,
中级管理人员30×$\frac{1}{10}$=3人,
高级管理人员10×$\frac{1}{10}$=1人,
即抽取三个层次的人数分别是16,3,1
故选C.

点评 本题考查分层抽样方法,解题的主要依据是每个个体被抽到的概率相等,主要是一些比较小的数字的运算,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.命题P:“如果a+b>0,那么a>0且b>0.”写出命题P的否命题:“如果a+b≤0,那么a≤0或b≤0.”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定义域为(0,+∞)、值域为R的函数f(x),对于任意x,y∈(0,+∞)总有f(xy)=f(x)+f(y).当x>1时,恒有f(x)>0.
(1)求证:f(x)必有反函数;
(2)设f(x)的反函数是f-1(x),若不等式f-1(-4x+k•2x-1)<1对任意的实数x恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系中,给定点P(m,n),其中$m={log_3}27,n=2lg\sqrt{10}$,
(1)求过P且与直线2x+y-5=0垂直的直线l1的方程;
(2)若直线l2平行于过点A(m-2,n-2)和B(0,2)的直线,且这两条直线间的距离为$\frac{{2\sqrt{17}}}{17}$,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点A(4,a)和B(5,b)的直线与直线y=2x+m平行,则|AB|=(  )
A.2B.$\sqrt{2}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=eax+λlnx,其中a<0,e是自然对数的底数
(Ⅰ)若f(x)是(0,+∞)上的单调函数,求λ的取值范围;
(Ⅱ)若0<λ<$\frac{1}{e}$,证明:函数f(x)有两个极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知O为坐标原点,F是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点,A、B分别为椭圆C的左、右顶点,P为椭圆C上一点,且PF⊥x轴.过顶点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则椭圆C的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=|cosx|的最小正周期为(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x1>0,x2>0,x1+x2<ex1x2(e为自然对数的底数),则(  )
A.x1+x2>1B.x1+x2<1C.$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$<$\frac{1}{e}$D.$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$>$\frac{1}{e}$

查看答案和解析>>

同步练习册答案