精英家教网 > 高中数学 > 题目详情
设f(x)=
4x
4x+2

(1)求证:f(x)+f(1-x)=1;
(2)求和f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
).
考点:函数的值
专题:函数的性质及应用
分析:(1)由已知得f(x)+f(1-x)=
4x
4x+2
+
41-x
41-x+2
,由此能证明f(x)+f(1-x)=1.
(2)由(1)得f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
)=[f(
1
2014
)+f(
2013
2014
)]+[f(
2
2014
)+f(
2012
2014
)+…+[f(
1011
2014
)+f(
1013
2014
)]+f(
1012
2014
),由此能求出结果.
解答: 解:(1)∵f(x)=
4x
4x+2

∴f(x)+f(1-x)=
4x
4x+2
+
41-x
41-x+2

=
4x
4x+2
+
4
4+2•4x

=
4x
4x+2
+
2
4x+2
=1.
(2)由(1)得f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014

=[f(
1
2014
)+f(
2013
2014
)]+[f(
2
2014
)+f(
2012
2014
)+…+[f(
1011
2014
)+f(
1013
2014
)]+f(
1012
2014

=1011+
4
4
+2

=1011.5.
点评:本题考查等式成立的证明,考查函数值的求法,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定两个长度为1的平面向量
OA
OB
,它们的夹角为
3
.如图所示,点C在以O为圆心的圆弧
AB
上运动.若
OC
=x
OA
+y
OB
,其中x,y∈R,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2
1+x2

(1)求f(2)与f(
1
2
),f(3)与f(
1
3
)的值;
(2)由(1)中求得的结果,你能发现f(x)与f(
1
x
)有什么关系?证明你的发现;
(3)求下列式子的值.f(0)+f(1)+f(2)+…+f(2013)+f(2014)+f(
1
2
)+f(
1
3
)+…+f(
1
2013
)+f(
1
2014

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数F(x)=f(x)+x2为奇函数,且g(x)=f(x)+2,若 f(1)=1,则g(-1)的值为(  )
A、1B、-3C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a1=3,a3=9,若ak=243,则k等于(  )
A、79B、80C、81D、82

查看答案和解析>>

科目:高中数学 来源: 题型:

若奇函数f(x)=3sinx+c的定义域是[a,b],则a+b+c等于(  )
A、3B、-3C、0D、无法计算

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.
(1)若x∈A是x∈B的充分条件,求a的取值范围;
(2)若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个结论正确的个数是(  )
①y=sin|x|的图象关于原点对称;
②y=sin(|x|+2)的图象是把y=sin|x|的图象向左平移2个单位得到的;
③y=sin(x+2)的图象是把y=sinx的图象向左平移2个单位得到的;
④y=sin(|x|+2)的图象是由y=sin(x+2)(x≥0)的图象及y=-sin(x-2)(x<0)的图象组成的.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x>1},集合B={x|x2<4},则集合A∩B=
 

查看答案和解析>>

同步练习册答案