【题目】如图所示,平面平面,且四边形为矩形,四边形为直角梯形, , , , .
(1)求证: 平面;
(2)求直线与平面所成角的余弦值;
【答案】(1)证明见解析;(2).
【解析】试题分析:(Ⅰ)结合已知条件本题可采用向量法求解,证明线面平行只需证明直线的方向向量垂直于平面的法向量;(Ⅱ)中由线面所成角需找到直线的方向向量与平面的法向量,利用公式求线面角
试题解析:(Ⅰ)(法一)取中点为,连接、,
且,
,则且.
四边形为矩形, 且,
且,
,则.
平面, 平面,
平面.
法二四边形为直角梯形,四边形为矩形,
, ,
又平面平面,且平面平面,
平面.
以为原点, 所在直线为轴, 所在直线为轴,
所在直线为轴建立如图所示空间直角坐标系.
根据题意我们可得以下点的坐标:
, , , , , ,
则, .
为平面的一个法向量.
又,
∴
∵平面
平面.
(Ⅱ)设平面的一个法向量为, , ,则, 取,得.
,设直线与平面所成角为,则
.
所以
所以与平面所成角的余弦值为
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
(2)证明:为等比数列;
(3)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】葫芦岛市某高中进行一项调查:2012年至2016年本校学生人均年求学花销(单位:万元)的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代号 | 1 | 2 | 3 | 4 | 5 |
年求学花销 | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析2012年至2016年本校学生人均年求学花销的变化情况,并预测该地区2017年本校学生人均年求学花销情况.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点,焦点在轴上的椭圆,离心率为且过点,过定点的动直线与该椭圆相交于、两点.
(1)若线段中点的横坐标是,求直线的方程;
(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x-3|-|x+1|,x∈R.
(1)解不等式f(x)<-1;
(2)设函数g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )
①平均数≤3;②标准差S≤2;③平均数≤3且标准差S≤2;④平均数≤3且极差小于或等于2;⑤众数等于1且极差小于或等于1.
A.①② B.③④
C.③④⑤ D.④⑤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们知道,如果集合AS,那么S的子集A的补集为SA={x|x∈S,且xA}.类似地,对于集合A、B,我们把集合{x|x∈A,且xB}叫作集合A与B的差集,记作A-B.据此回答下列问题:
(1)若A={1,2,3,4},B={3,4,5,6},求A-B;
(2)在下列各图中用阴影表示集合A-B.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+a2.
(I)若f(x)在x=1处有极值10,求a,b的值;
(II)若当a=-1时,f(x)<0在x∈[1,2]恒成立,求b的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com