精英家教网 > 高中数学 > 题目详情
已知数列an中,a1=
12
,点(n,2an+1,-an)在直线y=x上,其中n=l,2,3,….(1)令bn=an+1-an-1,证明数列bn是等比数列;(2)求数列an的前n项和Sn
分析:(1)将点代入直线的方程,得到{an}相邻项的关系,求出
bn+1
bn
为常数,利用等比数列的定义证得结论.
(2)利用等比数列的通项公式求出bn,利用逐差相加法求出an,利用分组法求出数列的前n项和.
解答:解:(1)由已知得a1=
1
2
,2an+1=an+n

a2=
3
4
a2-a1-1=-
3
4

bn+1
bn
=
an+2-an+1-1
an+1-an-1
=
1
2

∴数列{bn}是以-
3
4
为首项,以
1
2
为公比的等比数列
(2)由(1)知,bn=-
3
4
×(
1
2
)
n-1
=-
3
2
×
1
2n

an+1-an-1=-
3
2
×
1
2n

an-an-1=-
3
2
×
1
2n-1
+1


a3-a2=-
3
2
×
1
22
+1

a2-a1=-
3
2
×
1
2
+1

各式相乘得an-a1=-
3
2
(
1
2
+
1
22
+…+
1
2n-1
)+(n-1)

an=a1+n-1-
3
2
×
1
2
(1-
1
2n-1
)
1-
1
2

=
3
2n
+n-2

Sn=3(
1
2
+
1
22
+…+
1
2n
)
+(1+2+3+…+n)-2n=-
3
2n
+
n2-3n
2
+3
点评:求数列的前n项和关键判断出通项的特点,再选择合适的方法求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an中,a1=-60,an+1=an+3,那么|a1|+|a2|+…+|a30|的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an中,a1=1,a2=a-1(a≠1,a为实常数),前n项和Sn恒为正值,且当n≥2时,
1
Sn
=
1
an
-
1
an+1

(1)求证:数列Sn是等比数列;
(2)设an与an+2的等差中项为A,比较A与an+1的大小;
(3)设m是给定的正整数,a=2.现按如下方法构造项数为2m有穷数列bn:当k=m+1,m+2,…,2m时,bk=ak•ak+1;当k=1,2,…,m时,bk=b2m-k+1.求数列{bn}的前n项和为Tn(n≤2m,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知数列an中,a1=2,且an=n+an-1(n≥2),求这个数列的第m项am的值(m≥2).现给出此算法流程图的一部分如图.
(Ⅰ)请将空格部分(两个)填上适当的内容;
(Ⅱ)用“For”循环语句写出对应的算法;
(Ⅲ)若输出S=16,则输入的m的值是多少?

查看答案和解析>>

科目:高中数学 来源:2010年海南省儋州洋浦中学高考数学复习强化双基练习:等差数列与等比数列的综合问题(解析版) 题型:解答题

已知数列an中,a1=-60,an+1=an+3,那么|a1|+|a2|+…+|a30|的值为    

查看答案和解析>>

同步练习册答案