精英家教网 > 高中数学 > 题目详情
19.过点P(1,1)的直线与圆(x-2)2+(y-3)2=9相交于A,B两点,则|AB|的最小值为4.

分析 求出圆心坐标与半径,圆心C到直线距离的最大值为|CP|.由此结合垂径定理,即可算出|AB|的最小值.

解答 解:圆(x-2)2+(y-3)2=9的圆心坐标为(2,3),半径为3.点P(1,1)在圆(x-2)2+(y-3)2=9内部.
∵圆心到直线的距离的最大值为|CP|=$\sqrt{(1-2)^{2}+(1-3)^{2}}$=$\sqrt{5}$,
∴|AB|有最小值2$\sqrt{9-5}$=4,
故答案为:4.

点评 本题给出直线与圆相交于A、B两点,求截得弦长的最小值,着重考查了两点间的距离公式和用垂径定理求弦长等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在(2x-1)7的二项展开式中,第四项的系数为-560.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题中正确的个数是(  )
(1)若直线a不平行于平面α且a?α,则α内不存在与a平行的直线
(2)若直线a∥b,且a∥α,则b∥α
(3)若直线l上有无数个点不在平面α内,则l∥α
(4)若平面α与平面β相交,则他们有无穷个公共点.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2px(p>0)的焦点是双曲线$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{p}$=1的一个焦点,则双曲线方程为$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:
(1)${0.2^{-2}}-{π^0}+{(\frac{1}{27})^{-\;\;\frac{1}{3}}}$;
(2)log39+log26-log23+log43×log316.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga(1+x),g(x)=loga(1-x)其中(a>0且a≠1),设h(x)=f(x)-g(x).
(1)求函数h(x)的定义域,判断h(x)的奇偶性,并说明理由;
(2)求使h(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.将一颗骰子先后抛掷2次,观察向上的点数.
(Ⅰ)列举出所有可能的结果,并求两点数之和为5的概率;
(Ⅱ)求以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知角α的终边经过点$P(-1,\sqrt{3})$,则cosα=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为检测某种零件的生产质量,检验人员需抽取同批次的零件样本进行检测指标评分.若检测后评分结果大于60分的零件为合格零件,评分结果不超过40分的零件将直接被淘汰,评分结果在(40,60]内的零件可能被修复也可能被淘汰.现检验员小张检测出200个合格零件,根据指标评分绘制的频率分布直方图如图所示.
(1)求出频率分布与直方图中a的值;
(2)估计这200个零件评分结果的平均数和中位数;
(2)根据已有的经验,可能被修复的零件个体被修复的概率如表:
零件评分结果所在区间(40,50](50,60]
每个零件个数被修复的概率$\frac{1}{3}$$\frac{1}{2}$
假设每个零件被修复与否相互独立.现有5个零件的检测指标评分结果为(单位:分):38,43,45,52,58,
①求这5个零件中,至多有2个不被修复而淘汰的概率;
②记这5个零件被修复的个数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案