精英家教网 > 高中数学 > 题目详情
16.若对数函数的图象经过点(27,3),求它的解析式及f(9)的值.

分析 根据已知中对数函数y=logax的图象经过点(27,3),loga27=3,即a3=27,解得答案.

解答 解:∵对数函数f(x)=logax的图象经过点(27,3),
∴loga27=3,即a3=27,
解得:a=3,
∴f(x)=log3x,
∴f(9)=2.

点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知一种放射性物质经过120年剩留原来质量的95.76%,设质量为1的这种物质经过x年后剩量为y,则x、y之间的函数关系式为$0.957{6}^{\frac{x}{120}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|2x-1|-|x+2|.
(1)求不等式f(x)>0的解集;
(2)若存在x0∈R,使得f(x0)+2a2<4a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数y=lnx-x3+2x的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{3}}{3}$=1的左焦点F作直线交椭圆于A,B两点,且$\overrightarrow{BF}$=2$\overrightarrow{FA}$,则三角形0AB的面积是(0为坐标原点)$\frac{9\sqrt{5}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}中,a1=0,且对任意k∈N*,a2k-1,a2k,a2k+1成等差数列,其公差为2k,则Tn=$\frac{{2}^{2}}{{a}_{2}}+\frac{{3}^{2}}{{a}_{3}}+$…+$\frac{4{n}^{2}}{{a}_{2n}}$=4n-$\frac{3}{2}$-$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某生产车间为了检测其加工的零件的质量,检验人员需抽取同批次的零件样本进行检测指标评分.若检测指标评分大于60分的零件为合格零件,指标评分不超过40分的零件将直接被淘汰,指标评分在(40,60]内的零件可能被修复也可能被淘汰.现质检员小张检测出200个合格零件,根据指标评分绘制的频率分布直方图如图所示,
(1)求出频率分布直方图中a的值;
(2)估计这200个零件指标评分的平均数和中位数;
(Ⅱ)根据已有的经验,可能被修复的零件个体被修复的概率如下表:
 零件检测指标评分所在区间 (40,50](50,60]
 每个零件个体被修复的概率 $\frac{1}{3}$ $\frac{1}{2}$
假设每个零件被修复与否相互独立.现有3个零件的检测指标评分(单位:分)为:38,45,52,
①求这3个零件中,至多有2个不被修复而淘汰的概率;
②记这3个零件被修复的个数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数y=sin(3x+$\frac{π}{3}$)cos(x-$\frac{π}{6}$)+cos(3x+$\frac{π}{3}$)cos(x+$\frac{π}{3}$)的图象关于对称轴对称的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知不等式x2+(6-a)x+9-3a>0,若该不等式对任意x∈[-2,0]恒成立,则a的取值范围是(-∞,1).

查看答案和解析>>

同步练习册答案