精英家教网 > 高中数学 > 题目详情

圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1,圆O2交点的直线的直角坐标方程.

解:以有点为原点,极轴为x轴正半轴,
建立平面直角坐标系,两坐标系中取相同的长度单位.
(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ.
所以x2+y2=4x.
即x2+y2-4x=0为圆O1的直角坐标方程.….(3分)
同理x2+y2+4y=0为圆O2的直角坐标方程.….(6分)
(2)由解得
即圆O1,圆O2交于点(0,0)和(2,-2).
过交点的直线的直角坐标方程为y=-x.…(10分)
分析:(1)先利用三角函数的差角公式展开曲线C的极坐标方程的左式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
(2)先在直角坐标系中算出经过两圆交点的直线方程,再利用直角坐标与极坐标间的关系求出其极坐标方程即可.
点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1,圆O2交点的直线的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2
2
ρcos(θ-
π
4
)=2

(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-4:坐标系与参数方程已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2
2
ρcos(θ-
π
4
)=2.
(Ⅰ)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(Ⅱ)求经过两圆交点的直线的极坐标方程.
(2)选修4-5:不等式选讲,设x+2y+3z=3,求4x2+5y2+6z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
5
2
5
2

(2)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
x-y-2=0
x-y-2=0

(3)(不等式选讲)若不等式|3x-b|<4的解集中的整数有且仅有0,1,2,则b的取值范围是
(2,4)
(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

选作题(请在下列2小题中选做一题,全做的只计算第(1)题得分)
(1)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
x-y-2=0
x-y-2=0

(2)若不等式|3x-b|<4的解集中的整数有且仅有0,1,2,则b的取值范围是
(2,4)
(2,4)

查看答案和解析>>

同步练习册答案