精英家教网 > 高中数学 > 题目详情
已知一长方体的一个顶点上的三条棱长分别为4,4
2
,6,则它的对角线长为
 
考点:棱柱的结构特征
专题:计算题
分析:根据长方体的对角线长公式进行计算即可.
解答: 解:∵长方体的一个顶点上的三条棱长分别为4,4
2
,6,
∴它的对角线长为
l=
42+(4
2
)
2
+62
=
84
=2
21

故答案为:2
21
点评:本题考查了长方体的对角线公式l=
a2+b2+c2
的应用问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆Q的中心为坐标原点,焦点在x轴上,离心率e=
3
2
,过椭圆Q右焦点且垂直于x轴的一条直线交椭圆于E,F两点,|EF|=1.
(Ⅰ)求椭圆Q的方程;
(Ⅱ)已知两点C(-
6
2
,0),D(
6
2
,0)
,设A,B,M是椭圆Q上的三点,满足
OM
=
3
5
OA
+
4
5
OB
,点N为线段AB的中点,求|NC|+|ND|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从参加高一年级期末考试的学生中抽出20名学生,将其成绩(均为整数)分成六段[40,50),[50,60)…[90,100],然后画出如下所示频率分布直方图,但是缺失了第四组[70,80)的信息.观察图形的信息,回答下列问题.
(1)求第四组[70,80)的频率;
(2)从成绩是[50,60)和[60,70)的两段学生中任意选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断并证明函数y=2 x2+2x+3的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lgx+x-3在区间(k-1,k)(k∈Z)上有零点,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,AB=1,BC=2,PA=2,E、F分别是AB、PC的中点.
(1)求证:EF∥平面PAD;
(2)求证:CD⊥EF;
(3)求EF与平面ABCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左,右焦点分别为F1,F2,其右支上存在一点P,使得PF1与渐近线y=
b
a
x交于第一象限内的一点Q,且满足△F1QF2与△F1PF2的面积之比为
2
3
,则双曲线C的离心率e的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(Ⅰ)若f(x)=2x+m是定义在区间[-1,1]上的“局部奇函数”,求实数m的取值范围;
(Ⅱ)若f(x)=4x-m2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.
注:函数y=x+
1
x
在区间(0,1]上单调递减,在区间[1,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点是F,上顶点是A,点M满足
AM
=
1
2
(
AO
+
AF
)
(O为坐标原点),且sin∠MAF=
1
3
,则椭圆C的离心率为(  )
A、
6
3
B、
3
3
C、
6
6
D、
6
3

查看答案和解析>>

同步练习册答案