精英家教网 > 高中数学 > 题目详情

【题目】已知可以用一系列半径为且彼此不重叠的圆盘覆盖平面上的所有格点在平面直角坐标系中,横、纵坐标都是整数的点为格点),______4 (填“大于~小于”或等于”).

【答案】小于

【解析】

将半径为的三个圆盘两两外切地放人以格点为顶点的网格中,则必有一个单位网格其顶点分别包含在三个圆盘中.

【注】若一个单位网格的顶点在四个圆盘中,则

不妨设如图).

的三个切点分别为.不妨设点近.

的平行线与的弧交于点,分别过的垂线与的弧交于点

则四边形为矩形,且

的距离为

与弧交于点与弧交于点

,即.①

但当时,不等式①不成立,即当时,不能将所有格点覆盖,且当时,图1中的空隙曲线成比例扩大,从而也不能将所有格点覆盖.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题。

(1)求甲选手能晋级的概率;

(2)若乙选手每题能答对的概率都是,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是矩形,底面ABCDPBC边的中点,SB与平面ABCD所成的角为,且

1求证:平面SAP

2求二面角的余弦的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,则定义直线为曲线的“分界直线”.已知,则的“分界直线”为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知若椭圆)交轴于两点,点是椭圆上异于的任意一点,直线分别交轴于点,则为定值.

1)若将双曲线与椭圆类比,试写出类比得到的命题;

2)判定(1)类比得到命题的真假,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该基地周光照量(小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量(千克)与使用某种液体肥料的质量(千克)之间的关系如图所示.

(1)依据上图,是否可用线性回归模型拟合的关系?请计算相关系数并加以说明(精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)

(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量限制,并有如下关系:

周光照量(单位:小时)

光照控制仪运行台数

3

2

1

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?

附:相关系数公式

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)若曲线在点处的切线与直线平行,求的值;

2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.

(1)求一名顾客在一次摸奖活动中获得元的概率;

(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程选讲

在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系, 已知曲线的极坐标方程为,直线的极坐标方程为

(Ⅰ)写出曲线和直线的直角坐标方程;

(Ⅱ)设直线过点与曲线交于不同两点的中点为的交点为,求

查看答案和解析>>

同步练习册答案