【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线:,已知过点的直线的参数方程为: (为参数),直线与曲线分别交于两点.
(1)写出曲线和直线的普通方程;
(2)若,,成等比数列,求的值.
科目:高中数学 来源: 题型:
【题目】(题文)在平面直角坐标系中,椭圆的长轴长,短轴长.
(1)求椭圆的方程;
(2)记椭圆的左右顶点,分别过作轴的垂线交直线于点,为 椭圆上位于轴上方的动点,直线,分别交直线于点,.
(i)当直线的斜率为2时,求的面积;
(ii)求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=|x2-4x+3|.
(1)作出函数f(x)的图象;
(2)求函数f(x)的单调区间,并指出其单调性;
(3)求集合M={m|使方程f(x)=m有四个不相等的实根}.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用,分别表示乌龟和兔子所行的路程,为时间,则与故事情节相吻合的是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)是定义在 R上的偶函数,当 x≥0 时,f(x)=x2+ax+b 的部分图象如图所示:
(1)求 f(x)的解析式;
(2)在网格上将 f(x)的图象补充完整,并根据 f(x)图象写出不等式 f(x)≥1的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的图象过点,对任意满足,且有最小值为
(1)求的解析式;
(2)求函数在区间[0,1]上的最小值,其中;
(3)在区间[-1,3]上,的图象恒在函数的图象上方,试确定实数的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题10分)选修4—4:坐标系与参数方程
已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ。
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交C于A,B两点,交x轴于点D,B到x轴的距离比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若S△BOF=S△AOD , 求l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com