精英家教网 > 高中数学 > 题目详情
2.幂函数y=f(x)的图象过点$(\frac{1}{2},4)$,那么f(4)的值为$\frac{1}{16}$.

分析 根据幂函数f(x)的图象经过点($\frac{1}{2}$,4)求出解析式,再计算f(4)的值即可.

解答 解:设幂函数f(x)=xα,其图象经过点($\frac{1}{2}$,4),
∴($\frac{1}{2}$)α=4,
解得α=-2;
∴f(x)=x-2
∴f(4)=4-2=$\frac{1}{16}$
故答案为:$\frac{1}{16}$.

点评 本题考查了求函数的解析式以及利用函数的解析式求函数值的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在△ABC中,a=4,b=2$\sqrt{2}$,∠A=45°,则∠B=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数y=$\frac{ax+3}{x-2}$在区间(2,+∞)上单调递增,则a的取值范围是a<-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$\frac{a}{sinA}=\frac{b}{{\sqrt{3}cosB}}$.
(Ⅰ)求角B的值;
(Ⅱ)求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在正方体ABCD-A1B1C1D1中,E,F,G,M,N分别是B1C1,A1D1,A1B1,BD,B1C的中点,求证:
(1)MN∥平面CDD1C1
(2)平面EBD∥平面FGA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC中,角A,B,C所对的边分别为a,b,c,且满足$sinA(sinB+\sqrt{3}cosB)=\sqrt{3}sinC$.
(1)求角A的大小;    
(2)若$a=2\sqrt{3},\;b+c=4$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列结论:
①若命题p:存在x∈R,tan x=2;命题q:任意x∈R,x2-x+$\frac{1}{2}$>0.则命题“p且(非q)”是假命题;
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是$\frac{a}{b}$=-3;
③设F1,F2是双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为$\sqrt{3}$.
④设正实数x,y,z满足x2-3xy+4y2-z=0,则当$\frac{xy}{z}$取得最大值时,$\frac{2}{x}$+$\frac{1}{y}$-$\frac{2}{z}$的最大值为1.
其中正确结论的序号为①③④.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合$A=\left\{{\left.x\right|x=\frac{k}{2},k∈Z}\right\},B=\left\{{\left.x\right|x=\frac{k}{4},k∈Z}\right\}$,则(  )
A.A⊆BB.B⊆A
C.A=BD.A与B的关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(理)64个正数排成8行8列,如图所示:在符号aij(1≤i≤8,1≤j≤8)中,i表示该数所在的行数,j表示该数所在的列数.已知每一行都成等差数列,而每一列都成等比数列(且每列公比都相等).若a11=$\frac{1}{2}$,a24=1,a32=$\frac{1}{4}$.则a81a82…a88…aij=j($\frac{1}{2}$)i

查看答案和解析>>

同步练习册答案