精英家教网 > 高中数学 > 题目详情
如图,|
OA
|=1,|
OB
|=
3
,|
OC
|=2,∠AOB=∠BOC=30°,用
OA
OB
表示
OC
,则
OC
=
2
OB
-2
OA
2
OB
-2
OA
分析:在射线OA上取OD=2,过点D作DE∥OC交射线OB于点E,可证明
DE
=
OC
,再利用向量的线性运算即可得出.
解答:解:如图所示:过点C作CE∥OA交OB于点E,再过E作ED∥OC交OA于点D,则四边形OCED是平行四边形,
DE
=
OC

∵DE∥OC,∴∠DEC=30°,∴∠DOE=∠OED=30°,∴OD=DE=2,∠ODE=120°.
OD
DE
>=60°

OE
=
OD
+
DE

OE
2
=(
OD
+
DE
)2
=
OD
2
+
DE
2
+2
OD
DE

=22×2+2×2×2cos60°=12,∴|
OE
|
=2
3

在△ODE中,
DE
=
OE
-
OD

OD
=2
OA
OE
=
OB
|
OB
|
×|
OE
|
=2
OB

OC
=2
OB
-2
OA

故答案为2
OB
-2
OA
点评:熟练掌握向量的线性运算法则是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆C1的焦点在x轴上,中心是坐标原点O,且与椭圆C2
x2
12
+
y2
4
=1
的离心率相同,长轴长是C2长轴长的一半.A(3,1)为C2上一点,OA交C1于P点,P关于x轴的对称点为Q点,过A作C2的两条互相垂直的动弦AB,AC,分别交C2于B,C两点,如图.

(1)求椭圆C1的标准方程;
(2)求Q点坐标;
(3)求证:B,Q,C三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)如图,|OA|=2(单位:m),OB=1(单位:m),OA与OB的夹角为
π
6
,以A为圆心,AB为半径作圆弧
BDC
与线段OA延长线交与点C.甲、乙两质点同时从点O出发,甲先以速度1(单位:m/s)沿线段OB行至点B,再以速度3(单位:m/s)沿圆弧
BDC
行至点C后停止;乙以速率2(单位:m/s)沿线段OA行至A点后停止.设t时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)已知△OAB,
OA
=
a
OB
=
b
,|
a
|=
2
,|
b
|=
3
a
b
=1
,边AB上一点P1,这里P1异于A、B.由P1引边OB的垂线P1Q1,Q1是垂足,再由Q1引边OA的垂线Q1R1,R1是垂足.又由R1引边AB的垂线R1P2,P2是垂足.同样的操作连续进行,得到点 Pn、Qn、Rn(n∈N*).设 
APn
=tn(
b
-
a
)(0
<tn<1),如图.
(1).求|
AB
|
的值;
(2).某同学对上述已知条件的研究发现如下结论:
BQ1
=-
2
3
(1-t1)
b
,问该同学这个结论是否正确?并说明理由;
(3).当P1、P2重合时,求△P1Q1R1的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)已知△OAB,
OA
=
a
OB
=
b
,|
a
|=
2
,|
b
|=
3
a
b
=1
,边AB上一点P1,这里P1异于A、B.由P1引边OB的垂线P1Q1,Q1是垂足,再由Q1引边OA的垂线Q1R1,R1是垂足.又由R1引边AB的垂线R1P2,P2是垂足.同样的操作连续进行,得到点 Pn、Qn、Rn(n∈N*).设 
APn
=tn(
b
-
a
)(0
<tn<1),如图.
(1)求|
AB
|
的值;
(2)某同学对上述已知条件的研究发现如下结论:
BQ1
=-
2
3
(1-t1)
b
,问该同学这个结论是否正确?并说明理由;
(3)用t1和n表示tn

查看答案和解析>>

同步练习册答案