精英家教网 > 高中数学 > 题目详情
18.求函数y=$\frac{{e}^{x}+1}{{e}^{x}-1}$的值域.

分析 把函数解析式变形,得到ex=$\frac{y+1}{y-1}$,利用ex>0,即可求出函数的值域.

解答 解:∵y=$\frac{{e}^{x}+1}{{e}^{x}-1}$,
∴ex=$\frac{y+1}{y-1}$
∵ex>0,
∴$\frac{y+1}{y-1}$>0,
∴y>1或y<-1,
∴函数的值域为{y|y>1或y<-1}.

点评 本题考查函数的值域及其求法,正确变形是关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.多面体PEBCDA的直观图及其主视图、俯视图如图所示,已知PA⊥平面ABCD,则多面体PECBDA的体积是 (  )
A.$\frac{80}{3}$B.80C.48D.$\frac{176}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,内角A,B,C的对边分别为a,b,c,且B=2C,2bcosC-2ccosB=a,则tanC=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$±\frac{{\sqrt{3}}}{3}$C.$±\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.将一个骰子先后抛掷两次,观察向上的点数.
(1)列出两数都为奇数的所有可能情况,并求两数都为奇数的概率;
(2)以第一次向上的点数为横坐标x,第二次向上的点数为纵坐标y,列出“x>y”的所有可能情况,并求事件“x>y”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=3|x|,则f(x)在区间(m-1,2m)上不是单调函数,则实数m的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.6位同学在2016年元旦联欢中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到3份纪念品的同学人数为(  )
A.0或1B.1或2C.0或2D.1或3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.半径为1,圆心角为$\frac{2}{3}π$的扇形卷成一个圆锥,则它的体积为(  )
A.$\frac{{2\sqrt{2}π}}{81}$B.$\frac{{2\sqrt{2}π}}{27}$C.$\frac{π}{27}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若sinα是方程5x2-7x-6=0的根,则$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(3π+α)}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某算法的程序框图如图所示,则执行该算法后输出的结果为(  )
A.$\frac{39}{40}$B.$\frac{49}{50}$C.$\frac{50}{49}$D.$\frac{60}{59}$

查看答案和解析>>

同步练习册答案