精英家教网 > 高中数学 > 题目详情
1.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,AC=AB1

(1)文字叙述平面与平面垂直判定定理;
(2)求证:平面ABO⊥平面ACB1

分析 (1)通过作辅助线,作出二面角,利用定义法证明二面角的平面角的大小为90度即可得到证明;
(2)证明B1C⊥平面ABO,即可证明平面ABO⊥平面ACB1

解答 (1)解:两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
证明:设AB?α,AB⊥β,α∩β=CD,
则由AB?α,知AB、CD共面,
AB⊥β,CD?β,∴AB⊥CD,垂足为点B,
在平面β内过点B作直线BE⊥CD,
则∠ABE是二面角α-CD-β的平面角,
又AB⊥BE,即二面角α-CD-β是直二面角,
∴α⊥β;
(2)证明:∵AC=AB1,∴三角形ACB1为等腰三角形,
∵O为B1C的中点,
则AO⊥B1C,
菱形BB1C1C,则B1C⊥BC1
AO∩BC1=O,AO,BC1⊆平面ABO,AO⊆平面ABO
则有B1C⊥平面ABO
又因为B1C⊆平面ACB1
所以平面ABO⊥平面ACB1

点评 本题考查平面与平面垂直判定的证明与运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若M={n},则下列结论正确的是(  )
A.n∈MB.n≤MC.n∉MD.M=n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=log2(x+$\frac{6}{x}$-a)的定义域为A,值域为B.
(1)当a=5时,求集合A;
(2)设I=R为全集,集合M={x|y=$\frac{{x}^{2}-x+1}{2(a-5)x+4(a-5)-8}$},若(∁IM)∪(∁IB)=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在梯形ABCD中,AB⊥BC,AD∥BC,BC=2AD=2AB=4,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为$\frac{40π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考
生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:
90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(1)请根据数据在答题卡的茎叶图中完成物理成绩统计如图1;
(2)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图如图2;
数学成绩的频数分布表如下表:
数学成绩分组[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]
频数       
(3)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(x1-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)=5524,$\frac{4698}{5524}$≈0.85
求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(理)已知向量$\overrightarrow a=(m,1-n)$,$\overrightarrow b=(1,2)$,其中m>0,n>0,若$\overrightarrow a$∥$\overrightarrow b$,则$\frac{1}{m}+\frac{1}{n}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=px3+x2+4x(常数p≠0)在x=x1处取得极大值M.
(1)当M=-4时,求p的值;
(2)记f(x)=px3+x2+4x在x∈[-5,5]上的最小值为N,若N≥-5,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义在R上的偶函数f(x)在[0,+∞)单调递增,且f(2)=0,则不等式f(x)•x>0的解集是(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线x2=2py(p>0)与直线3x-2y+1=0交于A,B两点,$|{AB}|=\frac{5}{8}\sqrt{13}$,点M在抛物线上,MA⊥MB.
(Ⅰ) 求p的值;
(Ⅱ) 求点M的坐标.

查看答案和解析>>

同步练习册答案