【题目】已知椭圆的左.右焦点分别为,短轴两个端点为,且四边形的边长为 的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,分别是椭圆长轴的左,右端点,动点满足,连结,交椭圆于点.证明: 的定值;
(Ⅲ)在(Ⅱ)的条件下,试问轴上是否存在异于点,的定点,使得以为直径的圆恒过直线,的交点,若存在,求出点的坐标;若不存在,说明理由.
【答案】(Ⅰ) ;(Ⅱ)见解析;(Ⅲ) 存在,使得以为直径的圆恒过直线,的交点.
【解析】
试题(I)由于四边形为正方形,所以,由此求得椭圆方程为.(II)设出直线的方程,联立直线方程和椭圆方程,求出点坐标,代入可求得值为.(III)设出点的坐标,利用圆的直径所对圆周角为直角的几何性质得到,结合(II)将的坐标代入上式,可求得.
试题解析:(Ⅰ)由题意得,
,
所以所求的椭圆方程为
(Ⅱ)由(Ⅰ)知, ,
由题意可设,.
因为
所以
由整理得:
因为
所以,
所以
(Ⅲ)设,则.
若以为直径的圆恒过,的交点,则,
所以恒成立
由(Ⅱ)可知,
.
所以.
即恒成立.
所以.
所以存在,使得以为直径的圆恒过直线,的交点.
科目:高中数学 来源: 题型:
【题目】嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为公里,远月点与月球表面距离为公里.已知月球的直径为公里,则该椭圆形轨道的离心率约为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来大气污染防治工作得到各级部门的重视,某企业现有设备下每日生产总成本(单位:万元)与日产量(单位:吨)之间的函数关系式为,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为万元,除尘后当日产量时,总成本.
(1)求的值;
(2)若每吨产品出厂价为59万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点与点的距离和它到直线的距离相等,记点的轨迹为曲线
(1)求曲线的方程
(2)设点,动点在曲线上运动时,的最短距离为,求的值以及取到最小值时点的坐标
(3)设为曲线的任意两点,满足(为原点),试问直线是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元
(1)求该设备给企业带来的总利润(万元)与使用年数的函数关系;
(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|+2|x+1|.
(1)当a=2时,解不等式f(x)>4.
(2)若不等式f(x)<3x+4的解集是{x|x>2},求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个粒子的起始位置为原点,在第一象限内于两正半轴上运动,第一秒运动到(0,1),而后它接着按图示在轴、轴的垂直方向来回运动,且每秒移动一个单位长度,如图所示,经过秒时移动的位置设为,那么经过2019秒时,这个粒子所处的位置的坐标是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高科技企业研制出一种型号为A的精密数控车床,A型车床为企业创造的价值逐年减少(以投产一年的年初到下一年的年初为A型车床所创造价值的第一年).若第 1 年A型车床创造的价值是250万元,且第1年至第6年,每年A型车床创造的价值减少30万元;从第7年开始,每年A型车床创造的价值是上一年价值的 50%.现用()表示A型车床在第n年创造的价值.
(1)求数列的通项公式;
(2)记为数列的前n项的和,企业经过成本核算,若 万元,则继续使用A型车床,否则更换A型车床,试问该企业须在第几年年初更换A型车床?(已知:若正数数列是单调递减数列,则数列也是单调递减数列).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com