精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=xlnx,g(x)=,

(1)求f(x)的最小值;

(2)对任意都有恒成立,求实数a的取值范围;

(3)证明:对一切,都有成立.

【答案】(1) (2)( (3)见证明

【解析】

1)先求函数导数,再求导函数零点,列表分析导函数符号变化规律确定函数单调性,最后根据函数单调性确定最小值取法;(2)先分离不等式,转化为对应函数最值问题,利用导数求对应函数最值即得结果;(3)构造两个函数,再利用两函数最值关系进行证明.

(1)

时,单调递减,当时,单调递增,所以函数f(x)的最小值为f()=

(2)因为所以问题等价于上恒成立,

因为

函数f(x)在(0,1)上单调递减;

函数f(x)在(1,+)上单调递增;

即实数a的取值范围为(.

(3)问题等价于证明

由(1)知道

,令

函数在(0,1)上单调递增;

函数在(1,+)上单调递减;

所以{

因此,因为两个等号不能同时取得,所以

即对一切,都有成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“回文数”是指从左到右与从右到左读都一样的正整数,如221213553等.显然2位“回文数”共9个:112233,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y

1)求X为“回文数”的概率;

2)设随机变量表示XY两数中“回文数”的个数,求的概率分布和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在其定义域内有两个不同的极值点.

1)求实数的取值范围;

2)试比较的大小,并说明理由;

3)设的两个极值点为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体中,为底面的中心,为棱的中点,则下列结论中错误的是(

A.平面B.平面

C.异面直线所成角为D.与底面所成角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:类(不参加课外阅读),类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如下表:

男生

5

3

女生

3

3

1)求出表中的值;

2)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为参加课外阅读与否与性别有关;

男生

女生

总计

不参加课外阅读

参加课外阅读

总计

PKk0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.

1)当时,求某个时间段需要检查污染源处理系统的概率;

2)若每套环境监测系统运行成本为300/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小王想在某市一住宅小区买套新房,据了解,该小区有若干栋互相平行的平顶楼房,每栋楼房有15层,每层楼高为3米,顶楼有1米高的隔热层,两楼之间相距60.小王不想买最前面和最后面的楼房,但希望所买楼层全年每天正午都能晒到太阳.为此,小王查找了有关地理资料,获得如下一些信息:①该市的纬度(地面一点所在球半径与赤道平面所成的角)为北纬;②正午的太阳直射北回归线(太阳光线与赤道平面所成的角为)时,物体的影子最短,直射南回归线(太阳光线与赤道平面所成的角为)时,物体的影子最长,那么小王买房的最低楼层应为(

A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程和直线的直角坐标方程;

2)若射线的极坐标方程为.相交于点相交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是( )

A. 从2000年至2016年,该地区环境基础设施投资额逐年增加;

B. 2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;

C. 2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;

D. 为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.

查看答案和解析>>

同步练习册答案