精英家教网 > 高中数学 > 题目详情

已知函数数学公式(x>0,x≠1).
(1)求函数f(x)的极值;
(2)若不等式数学公式对任意实数x恒成立,求实数a的取值范围.

解:(1)函数的定义域为(0,1)∪(1,+∞),,…(3分)
令f'(x)=0,解得x=e,列表
x(0,1)(1,e)e(e,+∞)
f'(x)--0+
(0,1)单调递减单调递减极小值f(e)单调递增
由表得函数f(x)的单调减区间为(0,1),(1,e),单调减区间为(e,+∞);
所以极小值为f(e)=e,无极大值.
(2)当x≤0时,对任意a≠0,不等式恒成立;
当x>0时,在两边取自然对数,得
1°当0<x≤1时,lnx≤0,当a>0,不等式恒成立;如果a<0,lnx<0,alnx>0,不等式等价于
由(1)得,此时,不等式不恒成立.
2°当x>1时,lnx>0,则a>0,不等式等价于,由(1)得,此时的最小值为e,得0<a<e.…(14分)
综上:a的取值范围是0<a<e.
分析:(1)先确定函数的定义域,再求导函数,确定函数的单调区间,从而确定函数f(x)的极值;
(2)当x≤0时,对任意a≠0,不等式恒成立;当x>0时,在两边取自然对数,得,再分0<x≤1,x>1,进行讨论,进而可求a的取值范围.
点评:本题以函数为载体,考查导数知识的运用,考查函数的极值,考查恒成立问题,同时考查分类讨论的数学思想,有综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-
1x
,a∈R

(I)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值;
(II)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•嘉定区一模)已知函数f(x)=
|x+m-1|x-2
,m>0且f(1)=-1.
(1)求实数m的值;
(2)判断函数y=f(x)在区间(-∞,m-1]上的单调性,并用函数单调性的定义证明;
(3)求实数k的取值范围,使得关于x的方程f(x)=kx分别为:
①有且仅有一个实数解;
②有两个不同的实数解;
③有三个不同的实数解.

查看答案和解析>>

科目:高中数学 来源:必修一教案数学苏教版 苏教版 题型:044

已知函数f(x)=loga(a>0,a≠1),

(1)求函数f(x)的定义域;

(2)判定函数f(x)的奇偶性;

(3)求使f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源:河北省正定中学2010届高三上学期第一次月考(数学文) 题型:044

已知函数f(x)满足:对任意x,y∈R,都有f(x+y)=f(x)·f(y)-f(x)-f(y)+2成立,且x>0时,f(x)>2.

(1)求f(0)的值,并证明:当x<0时,1<f(x)<2;

(2)判断f(x)的单调性并加以证明.

(3)若函数g(x)=|f(x)-k|在(-∞,0)上递减,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>

同步练习册答案