精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求函数在区间上的最小值

(2)令是函数图象上任意两点,且满足求实数的取值范围;

(3)若,使成立,求实数的最大值.

【答案】(1)时,;当时,.2(3).

【解析】

试题分析:(1)先求导数,再求导函数零点,根据零点与定义区间位置关系分类讨论函数单调性:当时,上单调递增,当时,在区间上为减函数,在区间上为增函数,最后根据单调性确定函数最小值2先转化不等式不妨取,则,即恒成立,即上单调递增,然后利用导数研究函数单调性:恒成立.最后利用变量分离转化为对应函数最值,求参数.(3)不等式有解问题与恒成立问题一样,先利用变量分离转化为对应函数最值,的最大值,再利用导数求函数的最值,这要用到二次求导,才可确定函数单调性:上单调递增,进而确定函数最值

试题解析:解(1),令,则

时,上单调递增,

的最小值为

时,在区间上为减函数,在区间上为增函数,

的最小值为.

综上,当时,;当时,.

(2),对于任意的,不妨取,则,

则由可得

变形得恒成立,

上单调递增,

恒成立,

恒成立.

,当且仅当时取

.

(3)

.

使得成立.

,则

,则由 可得(舍)

,则上单调递减;

,则上单调递增.

上恒成立.

上单调递增.

,即.

实数的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知多面体均垂直于平面

(1)证明:⊥平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下列联表:

1)根据列联表,能否有99.9%的把握认为对手机游戏的兴趣程度与年龄有关?

2)若已经从40岁以下的被调查者中用分层抽样的方式抽取了5名,现从这5名被调查者中随机选取3名,求这3名被调查者中恰有1名对手机游戏无兴趣的概率.

附:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某沿海地区计划铺设一条电缆联通AB两地,A地位于东西方向的直线MN上的陆地处,B地位于海上一个灯塔处,在A地用测角器测得,在A地正西方向4km的点C处,用测角器测得.拟定铺设方案如下:在岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设.预算地下、水下的电缆铺设费用分别为2万元/km4万元/km,设,铺设电缆的总费用为万元.

1)求函数的解析式;

2)试问点P选在何处时,铺设的总费用最少,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中无理数.

(Ⅰ)若函数有两个极值点的取值范围

(Ⅱ)若函数的极值点有三个最小的记为最大的记为的最大值为的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2-a-lnx,其中a ∈R.

(I)讨论f(x)的单调性

(II)确定a的所有可能取值,使得在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是各项均为正数的等比数列,是等差数列,且.

I)求的通项公式;

II)设数列满足,求

III)对任意正整数,不等式成立,求正数的取值范围.

查看答案和解析>>

同步练习册答案