精英家教网 > 高中数学 > 题目详情
已知集合P=[
1
2
,2],函数y=log2(ax2-2x+2)的定义域为Q.
(1)若P∩Q≠Φ,求实数a的取值范围;
(5)若方程log2(ax2-2x+2)=2在[
1
2
,2]内有解,求实数a的取值范围.
(1)若P∩Q≠Φ,则在[
1
2
,2]内至少存在一个x使ax2-2x+2>0成立,
即a>-
2
x2
+
2
x
=-2(
1
x
-
1
2
2+
1
2
∈[-4,
1
2
],
∴a>-4(5分)
(2)方程log2(ax2-2x+2)=2在[
1
2
,2]
内有解,则ax2-2x-2=0在[
1
2
,2]
内有解,
即在[
1
2
,2]
内有值使a=
2
x2
+
2
x
成立,
u=
2
x2
+
2
x
=2(
1
x
+
1
2
)2-
1
2

x∈[
1
2
,2]
时,u∈[
3
2
,12]

a∈[
3
2
,12]

∴a的取值范围是
3
2
≤a≤12
.(10分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合P=[
1
2
,2],函数y=log2(ax2-2x+2)的定义域为Q.
(1)若P∩Q≠Φ,求实数a的取值范围;
(5)若方程log2(ax2-2x+2)=2在[
1
2
,2]内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|
1
2
≤x≤3},函数f(x)=log2(ax2-2x+2)的定义域为Q,若P∩Q=[
1
2
3
2
),P∪Q=(-2,3]则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P=[
1
2
,2]
,函数y=log2(ax2-2x+2)的定义域为Q.
(1)若方程log2(ax2-2x+2)=2[
1
2
,2]
内有解,求实数a的取值范围.
(2)若P∩Q≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合p=[
1
2
,2]
,函数y=log2(ax2-2x+2)的定义域为Q,
(1)若P∩Q≠Φ,求实数a的取值范围;
(2)若方程log2(ax2-2x+2)=2[
1
2
,2]
内有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案